Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr Yang has a very solid and broad knowledge and experience in computer science, and in-depth expertise in machine learning, data mining and temporal data processing. His main research area is in the temporal data mining and unsupervised ensemble learning. In these topics, he has produced some internationally excellent research results including proposing and developing several innovation methods and algorithms. These works have been published in the international leading research journals or conferences such as IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on Systems, Man, and Cybernetics- Part C, and Knowledge-Based Systems. His research results have attracted a lot of attentions from the machine learning research community and made the significant impact. As an evidence to illustrate the attention that his work has received and the impact his work has produced, his IEEE Transaction publication “Temporal data clustering via weighted clustering ensemble with different representations” has been cited more than 42 times based on Google scholar.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur b6c8b412cfb413aa068878c857dd09e6
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 1st edition. 172 pages. 9.00x7.25x0.75 inches. In Stock. N° de réf. du vendeur __0128116544
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 172. N° de réf. du vendeur 370417983
Quantité disponible : 3 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-ELS-9780128116548
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 172. N° de réf. du vendeur 26375627488
Quantité disponible : 3 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 172. N° de réf. du vendeur 18375627498
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9780128116548
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics. Includes fundamental concepts and knowledge, covering all key tasks and techniques of temporal data mining, i.e., temporal data representations, similarity measure, and mining tasks Concentrates on temporal data clustering tasks from different perspectives, including major algorithms from clustering algorithms and ensemble learning approaches Presents a rich blend of theory and practice, addressing seminal research ideas and looking at the technology from a practical point-of-view 172 pp. Englisch. N° de réf. du vendeur 9780128116548
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspective. N° de réf. du vendeur 134067055
Quantité disponible : Plus de 20 disponibles