The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. The second edition of Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. In order to present a unified treatment of machine learning problems and solutions, it discusses many methods from different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The text covers such topics as supervised learning, Bayesian decision theory, parametric methods, multivariate methods, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, and reinforcement learning. New to the second edition are chapters on kernel machines, graphical models, and Bayesian estimation; expanded coverage of statistical tests in a chapter on design and analysis of machine learning experiments; case studies available on the Web (with downloadable results for instructors); and many additional exercises. All chapters have been revised and updated. Introduction to Machine Learning can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
"This volume offers a very accessible introduction to the field of machine learning. Ethem Alpaydin gives a comprehensive exposition of the kinds of modeling and prediction problems addressed by machine learning, as well as an overview of the most common families of paradigms, algorithms, and techniques in the field. The volume will be particularly useful to the newcomer eager to quickly get a grasp of the elements that compose this relatively new and rapidly evolving field." --Joaquin Quinonero-Candela, coeditor, Dataset Shift in Machine Learning
Ethem Alpaydin is Professor in the Department of Computer Engineering at Bogazici University, Istanbul.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition vers Etats-Unis
Destinations, frais et délaisEUR 3,80 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Good. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 026201243X-11-1
Quantité disponible : 1 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
Hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_426942768
Quantité disponible : 1 disponible(s)
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
Etat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00085447302
Quantité disponible : 1 disponible(s)
Vendeur : Midtown Scholar Bookstore, Harrisburg, PA, Etats-Unis
hardcover. Etat : Good. HARDCOVER Good - Bumped and creased book with tears to the extremities, but not affecting the text block, may have remainder mark or previous owner's name - GOOD Standard-sized. N° de réf. du vendeur M026201243XZ3
Quantité disponible : 1 disponible(s)
Vendeur : Book Dispensary, Concord, ON, Canada
Hardcover. Etat : Very Good. 2nd Edition. VERY GOOD hardcover, no marks in text; a clean, gently used copy. Book. N° de réf. du vendeur 145564
Quantité disponible : 1 disponible(s)
Vendeur : Books-Evermore, College Station, TX, Etats-Unis
Hardcover. Etat : As New. Etat de la jaquette : As New. 2nd Edition. As new; never used. Hardcover 2010 edition, MIT Press. N° de réf. du vendeur 000001
Quantité disponible : 1 disponible(s)
Vendeur : LeLivreVert, Eysines, France
Etat : like new. Photo non contractuelle. Envoi rapide et soigné. N° de réf. du vendeur 9780262012430_6935_P174
Quantité disponible : 1 disponible(s)
Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni
Hardback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR003848521
Quantité disponible : 1 disponible(s)
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Hardcover. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned026201243X
Quantité disponible : 1 disponible(s)
Vendeur : thebookforest.com, San Rafael, CA, Etats-Unis
Etat : New. Well packaged and promptly shipped from California. US veteran operated. N° de réf. du vendeur 1LAGBP001OWL
Quantité disponible : 1 disponible(s)