Articles liés à Physics of the Future: How Science Will Shape Human...

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

 
9780307877055: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
Afficher les exemplaires de cette édition ISBN
 
 
Book by Kaku Michio

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Extrait :
Introduction
Predicting the Next 100 Years

When I was a child, two experiences helped to shape the person I am today and spawned two passions that have helped to define my entire life.

First, when I was eight years old, I remember all the teachers buzzing with the latest news that a great scientist had just died. That night, the newspapers printed a picture of his office, with an unfinished manuscript on his desk. The caption read that the greatest scientist of our era could not finish his greatest masterpiece. What, I asked myself, could be so difficult that such a great scientist could not finish it? What could possibly be that complicated and that important? To me, eventually this became more fascinating than any murder mystery, more intriguing than any adventure story. I had to know what was in that unfinished manuscript.

Later, I found out that the name of this scientist was Albert Einstein and the unfinished manuscript was to be his crowning achievement, his attempt to create a “theory of everything,” an equation, perhaps no more than one inch wide, that would unlock the secrets of the universe and perhaps allow him to “read the mind of God.”

But the other pivotal experience from my childhood was when I watched the Saturday morning TV shows, especially the Flash Gordon series with Buster Crabbe. Every week, my nose was glued to the TV screen. I was magically transported to a mysterious world of space aliens, starships, ray gun battles, underwater cities, and monsters. I was hooked. This was my first exposure to the world of the future. Ever since, I’ve felt a childlike wonder when pondering the future.

But after watching every episode of the series, I began to realize that although Flash got all the accolades, it was the scientist Dr. Zarkov who actually made the series work. He invented the rocket ship, the invisibility shield, the power source for the city in the sky, etc. Without the scientist, there is no future. The handsome and the beautiful may earn the admiration of society, but all the wondrous inventions of the future are a by--product of the unsung, anonymous scientists.

Later, when I was in high school, I decided to follow in the footsteps of these great scientists and put some of my learning to the test. I wanted to be part of this great revolution that I knew would change the world. I decided to build an atom smasher. I asked my mother for permission to build a 2.3-million electron volt particle accelerator in the garage. She was a bit startled but gave me the okay. Then, I went to Westinghouse and Varian Associates, got 400 pounds of transformer steel, 22 miles of copper wire, and assembled a betatron accelerator in my mom’s garage.

Previously, I had built a cloud chamber with a powerful magnetic field and photographed tracks of antimatter. But photographing antimatter was not enough. My goal now was to produce a beam of antimatter. The atom smasher’s magnetic coils successfully produced a huge 10,000 gauss magnetic field (about 20,000 times the earth’s magnetic field, which would in principle be enough to rip a hammer right out of your hand). The machine soaked up 6 kilowatts of power, draining all the electricity my house could provide. When I turned on the machine, I frequently blew out all the fuses in the house. (My poor mother must have wondered why she could not have a son who played football instead.)

So two passions have intrigued me my entire life: the desire to understand all the physical laws of the universe in a single coherent theory and the desire to see the future. Eventually, I realized that these two passions were actually complementary. The key to understanding the future is to grasp the fundamental laws of nature and then apply them to the inventions, machines, and therapies that will redefine our civilization far into the future.

There have been, I found out, numerous attempts to predict the future, many useful and insightful. However, they were mainly written by historians, sociologists, science fiction writers, and “futurists,” that is, outsiders who are predicting the world of science without a firsthand knowledge of the science itself. The scientists, the insiders who are actually creating the future in their laboratories, are too busy making breakthroughs to have time to write books about the future for the public.

That is why this book is different. I hope this book will give an insider’s perspective on what miraculous discoveries await us and provide the most authentic, authoritative look into the world of 2100.

Of course, it is impossible to predict the future with complete accuracy. The best one can do, I feel, is to tap into the minds of the scientists at the cutting edge of research, who are doing the yeoman’s work of inventing the future. They are the ones who are creating the devices, inventions, and therapies that will revolutionize civilization. And this book is their story. I have had the opportunity to sit in the front-row seat of this great revolution, having interviewed more than 300 of the world’s top scientists, thinkers, and dreamers for national TV and radio. I have also taken TV crews into their laboratories to film the prototypes of the remarkable devices that will change our future. It has been a rare honor to have hosted numerous science specials for BBC--TV, the Discovery Channel, and the Science Channel, profiling the remarkable inventions and discoveries of the visionaries who are daring to create the future. Being free to pursue my work on string theory and to eavesdrop on the cutting--edge research that will revolutionize this century, I feel I have one of the most desirable jobs in science. It is my childhood dream come true.

But this book differs from my previous ones. In books like Beyond Einstein, Hyperspace, and Parallel Worlds, I discussed the fresh, revolutionary winds sweeping through my field, theoretical physics, that are opening up new ways to understand the universe. In Physics of the Impossible, I discussed how the latest discoveries in physics may eventually make possible even the most imaginative schemes of science fiction.

This book most closely resembles my book Visions, in which I discussed how science will evolve in the coming decades. I am gratified that many of the predictions made in that book are being realized today on schedule. The accuracy of my book, to a large degree, has depended on the wisdom and foresight of the many scientists I interviewed for it.

But this book takes a much more expansive view of the future, discussing the technologies that may mature in 100 years, that will ultimately determine the fate of humanity. How we negotiate the challenges and opportunities of the next 100 years will determine the ultimate trajectory of the human race.



PREDICTING THE NEXT CENTURY

Predicting the next few years, let alone a century into the future, is a daunting task. Yet it is one that challenges us to dream about technologies we believe will one day alter the fate of humanity.

In 1863, the great novelist Jules Verne undertook perhaps his most ambitious project. He wrote a prophetic novel, called Paris in the Twentieth Century, in which he applied the full power of his enormous talents to forecast the coming century. Unfortunately, the manuscript was lost in the mist of time, until his great--grandson accidentally stumbled upon it lying in a safe where it had been carefully locked away for almost 130 years. Realizing what a treasure he had found, he arranged to have it published in 1994, and it became a best seller.

Back in 1863, kings and emperors still ruled ancient empires, with impoverished peasants performing backbreaking work toiling in the fields. The United States was consumed by a ruinous civil war that would almost tear the country apart, and steam power was just beginning to revolutionize the world. But Verne predicted that Paris in 1960 would have glass skyscrapers, air conditioning, TV, elevators, high--speed trains, gasoline--powered automobiles, fax machines, and even something resembling the Internet. With uncanny accuracy, Verne depicted life in modern Paris.

This was not a fluke, because just a few years later he made another spectacular prediction. In 1865, he wrote From the Earth to the Moon, in which he predicted the details of the mission that sent our astronauts to the moon more than 100 years later in 1969. He accurately predicted the size of the space capsule to within a few percent, the location of the launch site in Florida not far from Cape Canaveral, the number of astronauts on the mission, the length of time the voyage would last, the weightlessness that the astronauts would experience, and the final splashdown in the ocean. (The only major mistake was that he used gunpowder, rather than rocket fuel, to take his astronauts to the moon. But liquid-fueled rockets wouldn’t be invented for another seventy years.)

How was Jules Verne able to predict 100 years into the future with such breathtaking accuracy? His biographers have noted that, although Verne was not a scientist himself, he constantly sought out scientists, peppering them with questions about their visions of the future. He amassed a vast archive summarizing the great scientific discoveries of his time. Verne, more than others, realized that science was the engine shaking the foundations of civilization, propelling it into a new century with unexpected marvels and miracles. The key to Verne’s vision and profound insights was his grasp of the power of science to revolutionize society.

Another great prophet of technology was Leonardo da Vinci, painter, thinker, and visionary. In the late 1400s, he drew beautiful, accurate diagrams of machines that would one day fill the skies: sketches of parachutes, helicopters, hang gliders, and even airplanes. Remarkably, many of his inventions would have flown. (His flying machines, however, needed one more ingredient: at least a 1-horsepower motor, something that would not be available for another 400 years.)

What is equally astonishing is that Leonardo sketched the blueprint for a mechanical adding machine, which was perhaps 150 years ahead of its time. In 1967, a misplaced manuscript was reanalyzed, revealing his idea for an adding machine with thirteen digital wheels. If one turned a crank, the gears inside turned in sequence performing the arithmetic calculations. (The machine was built in 1968 and it worked.)

In addition, in the 1950s another manuscript was uncovered which contained a sketch for a warrior automaton, wearing German--Italian armor, that could sit up and move its arms, neck, and jaw. It, too, was subsequently built and found to work.

Like Jules Verne, Leonardo was able to get profound insights into the future by consulting a handful of forward--thinking individuals of his time. He was part of a small circle of people who were at the forefront of innovation. In addition, Leonardo was always experimenting, building, and sketching models, a key attribute of anyone who wants to translate thinking into reality.

Given the enormous, prophetic insights of Verne and Leonardo da Vinci, we ask the question: Is it possible to predict the world of 2100? In the tradition of Verne and Leonardo, this book will closely examine the work of the leading scientists who are building prototypes of the technologies that will change our future. This book is not a work of fiction, a by--product of the overheated imagination of a Hollywood scriptwriter, but rather is based on the solid science being conducted in major laboratories around the world today.

The prototypes of all these technologies already exist. As William Gibson, the author of Neuromancer who coined the word cyberspace, once said, “The future is already here. It’s just unevenly distributed.”

Predicting the world of 2100 is a daunting task, since we are in an era of profound scientific upheaval, in which the pace of discovery is always accelerating. More scientific knowledge has been accumulated just in the last few decades than in all human history. And by 2100, this scientific knowledge will again have doubled many times over.

But perhaps the best way to grasp the enormity of predicting 100 years into the future is to recall the world of 1900 and remember the lives our grandparents lived.

Journalist Mark Sullivan asks us to imagine someone reading a newspaper in the year 1900:

In his newspapers of January 1, 1900, the American found no such word as radio, for that was yet twenty years in from coming; nor “movie,” for that too was still mainly of the future; nor chauffeur, for the automobile was only just emerging and had been called “horseless carriage. . . .” There was no such word as aviator. . . . Farmers had not heard of tractors, nor bankers of the Federal Reserve System. Merchants had not heard of chain--stores nor “self--service”; nor seamen of oil--burning engines. . . . Ox--teams could still be seen on country roads. . . . Horses or mules for trucks were practically universal. . . . The blacksmith beneath the spreading chestnut--tree was a reality.

To understand the difficulty of predicting the next 100 years, we have to appreciate the difficulty that the people of 1900 had in predicting the world of 2000. In 1893, as part of the World’s Columbian Exposition in Chicago, seventy--four well--known individuals were asked to predict what life would be like in the next 100 years. The one problem was that they consistently underestimated the rate of progress of science. For example, many correctly predicted that we would one day have commercial transatlantic airships, but they thought that they would be balloons. Senator John J. Ingalls said, “It will be as common for the citizen to call for his dirigible balloon as it now is for his buggy or his boots.” They also consistently missed the coming of the automobile. Postmaster General John Wanamaker stated that the U.S. mail would be delivered by stagecoach and horseback, even 100 years into the future.

This underestimation of science and innovation even extended to the patent office. In 1899, Charles H. Duell, commissioner of the U.S. Office of Patents, said, “Everything that can be invented has been invented.”

Sometimes experts in their own field underestimated what was happening right beneath their noses. In 1927, Harry M. Warner, one of the founders of Warner Brothers, remarked during the era of silent movies, “Who the hell wants to hear actors talk?”

And Thomas Watson, chairman of IBM, said in 1943, “I think there is a world market for maybe five computers.”

This underestimation of the power of scientific discovery even extended to the venerable New York Times. (In 1903, the Times declared that flying machines were a waste of time, just a week before the Wright brothers successfully flew their airplane at Kitty Hawk, North Carolina. In 1920, the Times criticized rocket scientist Robert Goddard, declaring his work nonsense because rockets cannot move in a vacuum. Forty--nine years later, when Apollo 11 astronauts landed on the moon, the Times, to its credit, ran the retraction: ...
Revue de presse :
"[A] wide-ranging tour of what to expect from technological progress over the next century or so.... fascinating—and related with commendable clarity"--Wall Street Journal

"Mind-bending....fascinating....Kaku has a gift for explaining incredibly complex concepts, on subjects as far-ranging as nanotechnology and space travel, in language the lay reader can grasp....engrossing"--San Francisco Chronicle

"[Kaku] has the rare ability to take complicated scientific theories and turn them into readable tales about what our lives will be like in the future.....fun...fascinating. And just a little bit spooky"--USA Today

"Epic in its scope and heroic in its inspiration"--Scientific American

"Following in the footsteps of Leonardo da Vinci and Jules Verne, Kaku, author of a handful of books about science, looks into the not-so-distant future and envisions what the world will look like. It should be an exciting place, with driverless cars, Internet glasses, universal translators, robot surgeons, the resurrection of extinct life forms, designer children, space tourism, a manned mission to Mars, none of which turn out to be as science-fictiony as they sound. In fact, the most exciting thing about the book is the fact that most of the developments Kaku discusses can be directly extrapolated from existing technologies. Robot surgeons and driverless cars, for example, already exist in rudimentary forms. Kaku, a physics professor and one of the originators of the string field theory (an offshoot of the more general string theory), draws on current research to show how, in a very real sense, our future has already been written. The book's lively, user-friendly style should appeal equally to fans of science fiction and popular science."
--Booklist

"Breezy, accessible and cheerily upbeat new book....Kaku’s primary strengths, other than his obvious expertise as a physicist, lie in the lucidity of his explanations....enviable access to many laboratories and research and development departments around the world....scrupulous"--The Sunday Times (UK)

Praise for MICHIO KAKU

“Mesmerizing . . . the reader exits dizzy, elated, and looking at the world in a literally revolutionary way.”
Washington Post Book World

“With his lucid and wry style, his knack for bringing the most ethereal ideas down to earth, and his willingness to indulge in a little scientifically informed futurology now and then . . . Michio Kaku has written one of the best popular accounts of higher physics.”
Wall Street Journal

“What a wonderful adventure it is, trying to think the unthinkable.”
New York Times Book Review

“An erudite, compelling, insider’s look into the most mind-bending potential of science research.”
Chicago Tribune
“Accessible, entertaining, and inspiring”
New Scientist

“Mesmerizing information breathtakingly presented . . . thoroughly engaging . . . magnificent!”
Philadelphia Inquirer

“An invigorating experience”
—Christian Science Monitor

“Kaku covers a tremendous amount of material . . . in a clear and lively way.”
Los Angeles Times Book Review

From the Hardcover edition.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurRandom House
  • Date d'édition2011
  • ISBN 10 0307877051
  • ISBN 13 9780307877055
  • ReliureCD
  • Evaluation vendeur
EUR 100,11

Autre devise

Frais de port : EUR 3,24
Vers Etats-Unis

Destinations, frais et délais

Ajouter au panier

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Kaku, Michio
Edité par Random House Audio (2011)
ISBN 10 : 0307877051 ISBN 13 : 9780307877055
Neuf Paperback Quantité disponible : 1
Vendeur :
Wizard Books
(Long Beach, CA, Etats-Unis)
Evaluation vendeur

Description du livre Paperback. Etat : new. New. N° de réf. du vendeur Wizard0307877051

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 100,11
Autre devise

Ajouter au panier

Frais de port : EUR 3,24
Vers Etats-Unis
Destinations, frais et délais
Image d'archives

Kaku, Michio
Edité par Random House Audio (2011)
ISBN 10 : 0307877051 ISBN 13 : 9780307877055
Neuf Paperback Quantité disponible : 1
Vendeur :
GoldBooks
(Austin, TX, Etats-Unis)
Evaluation vendeur

Description du livre Paperback. Etat : new. New Copy. Customer Service Guaranteed. N° de réf. du vendeur think0307877051

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 116,40
Autre devise

Ajouter au panier

Frais de port : EUR 3,93
Vers Etats-Unis
Destinations, frais et délais
Image d'archives

Kaku, Michio
Edité par Random House Audio (2011)
ISBN 10 : 0307877051 ISBN 13 : 9780307877055
Neuf Paperback Quantité disponible : 1
Vendeur :
GoldenWavesOfBooks
(Fayetteville, TX, Etats-Unis)
Evaluation vendeur

Description du livre Paperback. Etat : new. New. Fast Shipping and good customer service. N° de réf. du vendeur Holz_New_0307877051

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 116,91
Autre devise

Ajouter au panier

Frais de port : EUR 3,70
Vers Etats-Unis
Destinations, frais et délais
Image d'archives

Kaku, Michio
Edité par Random House Audio (2011)
ISBN 10 : 0307877051 ISBN 13 : 9780307877055
Neuf Quantité disponible : 2
Vendeur :
Save With Sam
(North Miami, FL, Etats-Unis)
Evaluation vendeur

Description du livre Audio CD. Etat : New. Brand New!. N° de réf. du vendeur VIB0307877051

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 128,79
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais