Review of the First Edition:
The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis... A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.
--Journal of Applied Statistics
Statistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.
What's New in the Second Edition:
Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ding-Geng (Din) Chen is a fellow of American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina-Chapel Hill, USA. Formerly, he was a Professor of Biostatistics at the University of Rochester, New York, USA, the Karl E. Peace Endowed Eminent Scholar Chair and professor in Biostatistics in the Jiann-Ping Hsu College of Public Health at Georgia Southern University, USA, and a professor of statistics at South Dakota Stata University, USA. Dr. Chen's research interests include clinical trial biostatistical methodological development in Bayesian models, survival analysis, multi-level modelling and longitudinal data analysis, and statistical meta-analysis. He has published more than 200 refereed papers and co-authored/co-edited 30 book in statistics.
Karl E. Peace is the Georgia Cancer Coalition Distinguished Cancer Scholar, Founding Director of the Center for Biostatistics, Professor of Biostatistics, and Senior Research Scientist in the Jiann-Ping Hsu College of Public Health at Georgia Southern University (GSU). Dr. Peace has made pivotal contributions in the development and approval of drugs to treat numerous diseases and disorders. A fellow of the ASA, he has been a recipient of many honors, including the Drug Information Association Outstanding Service Award, the American Public Health Association Statistics Section Award, The First recipient of the President's Medal for outstanding contributions to GSU, and recognition by the Georgia and US Houses of Representatives, and the Virginia House of Delegates.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 65,48 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 11,23 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Chiron Media, Wallingford, Royaume-Uni
Hardcover. Etat : New. N° de réf. du vendeur 6666-TNFPD-9780367183837
Quantité disponible : 5 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-7097
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-79801
Quantité disponible : 5 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 456. N° de réf. du vendeur 26384695723
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 456. N° de réf. du vendeur 379208308
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ding-Geng (Din) Chen is a fellow of American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina-Chapel Hill, USA. Formerly, he was a Professor of Biostatistics at the U. N° de réf. du vendeur 417369137
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 456. N° de réf. du vendeur 18384695713
Quantité disponible : 4 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 185. N° de réf. du vendeur B9780367183837
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Review of the First Edition:The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis.A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.-Journal of Applied StatisticsStatistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.What's New in the Second Edition:Adds Stata programs along with the R programs for meta-analysisUpdates all the statistical meta-analyses with R/Stata programsCovers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SSAdds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MASuitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry. 424 pp. Englisch. N° de réf. du vendeur 9780367183837
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Review of the First Edition:The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis.A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.-Journal of Applied StatisticsStatistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.What's New in the Second Edition:Adds Stata programs along with the R programs for meta-analysisUpdates all the statistical meta-analyses with R/Stata programsCovers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SSAdds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MASuitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry. N° de réf. du vendeur 9780367183837
Quantité disponible : 2 disponible(s)