Articles liés à 13 Things That Don't Make Sense: The Most Baffling...

13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time

Note moyenne 3,75
( 5 668 avis fournis par Goodreads )
9780385664233: 13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time
Afficher les exemplaires de cette édition ISBN

13 Things That Don't Make Sense Based on Brooks' popular article for "New Scientist," this work tackles the most hotly debated topics in science today, and shows how these conundrums are changing the way scientists approach their work and why these issues define science in the 21st century. Full description

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Extrait :

Chapter 1


We can only account for 4 percent of the cosmos

The Indian tribes around the sleepy Arizona city of Flagstaff have an interesting take on the human struggle for peace and harmony. According to their traditions, the difficulties and confusions of life have their roots in the arrangement of the stars in the heavens — or rather the lack of it. Those jewels in the sky were meant to help us find a tranquil, contented existence, but when First Woman was using the stars to write the moral laws into the blackness, Coyote ran out of patience and flung them out of her bowl, spattering them across the skies. From Coyote's primal impatience came the mess of constellations in the heavens and the chaos of human existence.

The astronomers who spend their nights gazing at the skies over Flagstaff may find some comfort in this tale. On top of the hill above the city sits a telescope whose observations of the heavens, of the mess of stars and the way they move, have led us into a deep confusion. At the beginning of the twentieth century, starlight passing through the Clark telescope at Flagstaff's Lowell Observatory began a chain of observations that led us to one of the strangest discoveries in science: that most of the universe is missing.

If the future of science depends on identifying the things that don't make sense, the cosmos has a lot to offer. We long to know what the universe is made of, how it really works: in other words, its constituent particles and the forces that guide their interactions. This is the essence of the "final theory" that physicists dream of: a pithy summation of the cosmos and its rules of engagement. Sometimes newspaper, magazine, and TV reports give the impression that we're almost there. But we're not. It is going to be hard to find that final theory until we have dealt with the fact that the majority of the particles and forces it is supposed to describe are entirely unknown to science. We are privileged enough to be living in the golden age of cosmology; we know an enormous amount about how the cosmos came to be, how it evolved into its current state, and yet we don't actually know what most of it is. Almost all of the universe is missing: 96 percent, to put a number on it.

The stars we see at the edges of distant galaxies seem to be moving under the guidance of invisible hands that hold the stars in place and stop them from flying off into empty space. According to our best calculations, the substance of those invisible guiding hands — known to scientists as dark matter — is nearly a quarter of the total amount of mass in the cosmos. Dark matter is just a name, though. We don't have a clue what it is.

And then there is the dark energy. When Albert Einstein showed that mass and energy were like two sides of the same coin, that one could be converted into the other using the recipe E=mc2, he unwittingly laid the foundations for what is now widely regarded as the most embarrassing problem in physics. Dark energy is scientists' name for the ghostly essence that is making the fabric of the universe expand ever faster, creating ever more empty space between galaxies. Use Einstein's equation for converting energy to mass, and you'll discover that dark energy is actually 70 percent of the mass (after Einstein, we should really call it mass-energy) in the cosmos. No one knows where this energy comes from, what it is, whether it will keep on accelerating the universe's expansion forever, or whether it will run out of steam eventually. When it comes to the major constituents of the universe, it seems no one knows anything much. The familiar world of atoms — the stuff that makes us up — accounts for only a tiny fraction of the mass and energy in the universe. The rest is a puzzle that has yet to be solved.

How did we get here? Via one man's obsession with life on Mars. In 1894 Percival Lowell, a wealthy Massachusetts industrialist, had become fixated on the idea that there was an alien civilization on the red planet. Despite merciless mocking from many astronomers of the time, Lowell decided to search for irrefutable astronomical evidence in support of his conviction. He sent a scout to various locations around the United States; in the end, it was decided that the clear Arizona skies above Flagstaff were perfect for the task. After a couple of years of observing with small telescopes, Lowell bought a huge (for the time) 24-inch refractor from a Boston manufacturer and had it shipped to Flagstaff along the Santa Fe railroad.

Thus began the era of big astronomy. The Clark telescope cost Lowell twenty thousand dollars and is housed in a magnificent pine-clad dome on top of Mars Hill, a steep, switchbacked track named in honor of Lowell's great obsession. The telescope has an assured place in history: in the 1960s the Apollo astronauts used it to get their first proper look at their lunar landing sites. And decades earlier an earnest and reserved young man called Vesto Melvin Slipher used it to kick-start modern cosmology.

Slipher was born an Indiana farm boy in 1875. He came to Flagstaff as Percival Lowell's assistant in 1901, just after receiving his degree in mechanics and astronomy. Lowell took Slipher on for a short, fixed term; he employed Slipher reluctantly, as a grudging favor to one of his old professors. It didn't work out quite as Lowell planned, however. Slipher left fifty-three years later when he retired from the position of observatory director.

Though sympathetic to his boss's obsession, Slipher was not terribly interested in the hunt for Martian civilization. He was more captivated by the way that inanimate balls of gas and dust — the stars and planets — moved through the universe. One of the biggest puzzles facing astronomers of the time was the enigma of the spiral nebulae. These faint glows in the night sky were thought by some to be vast aggregations of stars — "Island Universes," as the philosopher Immanuel Kant had described them. Others believed them to be simply distant planetary systems. It is almost ironic that, in resolving this question, Slipher's research led us to worry about what we can't see, rather than what we can.

In 1917, when Albert Einstein was putting the finishing touches to his description of how the universe behaves, he needed to know one experimental fact to pull it all together. The question he asked of the world's astronomers was this: Is the universe expanding, contracting, or holding steady?

Einstein's equations described how the shape of space-time (the dimensions of space and time that together make the fabric of the universe) would develop depending on the mass and energy held within it. Originally, the equations made the universe either expand or contract under the influence of gravity. If the universe was holding steady, he would have to put something else in there: an antigravity term that could push where gravity exerted a pull. He wasn't keen to do so; while it made sense for mass and energy to exert a gravitational pull, there was no obvious reason why any antigravity should exist.

Unfortunately for Einstein, there was consensus among astronomers of the time that the universe was holding steady. So, with a heavy heart, he added in the antigravity term to stop his universe expanding or contracting. It was known as the cosmological constant (because it affected things over cosmological distances, but not on the everyday scale of phenomena within our solar system), and it was introduced with profuse apologies. This constant, Einstein said, was "not justified by our actual knowledge of gravitation." It was only there to make the equations fit with the data. What a shame, then, that nobody had been paying attention to Vesto Slipher's results.

Slipher had been using the Clark telescope to measure whether the nebulae were moving relative to Earth. For this he used a spectrograph, an instrument that splits the light from telescopes into its constituent colors. Looking at the light from the spiral nebulae, Slipher realized that the various colors in the light would change depending on whether a nebula was moving toward or away from Earth. Color is our way of interpreting the frequency of — that is, the number of waves per second in — radiation. When we see a rainbow, what we see is radiation of varying frequencies. The violet light is a relatively high-frequency radiation, the red is a lower frequency; everything else is somewhere in between.

Add motion to that, though, and you have what is known as the Doppler effect: the frequency of the radiation seems to change, just as the frequency (or pitch) of an ambulance siren seems to change as it speeds past us on the street. If a rainbow was moving toward you very fast, all the colors would be shifted toward the blue end of the spectrum; the number of waves reaching you every second would get a boost from the motion of the rainbow's approach. This is called a blueshift. If the rainbow was racing away from you, the number of incoming waves per second would be reduced and the frequency of radiation would shift downward toward the red end of the spectrum: a redshift.

It is the same for light coming from distant nebulae. If a nebula were moving toward Slipher's telescope, its light would be blueshifted. Nebulae that were speeding away from Earth would be redshifted. The magnitude of the frequency change gives the speed.

By 1912 Slipher had completed four spectrographs. Three were redshifted, and one — Andromeda — was blueshifted. In the next two years Slipher measured the motions of twelve more galaxies. All but one of these was redshifted. It was a stunning set of results, so stunning, in fact, that when he presented them at the August 1914 meeting of the American Astronomical Society, he received a standing ovation.

Slipher is one of the unsung heroes of astronomy. According to his National Academy of Sciences biography, he "probably made more fundamental discoveries th...

Présentation de l'éditeur :

Ninety-six per cent of the universe is missing. The effects of homeopathy don’t go away under rigorous scientific conditions. The laws of nature aren’t what they used to be. Thirty years on, no one has an explanation for a seemingly intelligent signal received from outer space. The US Department of Energy is re-examining cold fusion because the experimental evidence seems too solid to ignore. The placebo effect is put to work in medicine while doctors can’t agree whether it even exists.

In an age when science is supposed to be king, scientists are beset by experimental results they simply can’t explain. But, if the past is anything to go by, these anomalies contain the seeds of future revolutions. While taking readers on an entertaining tour d’horizon of the strangest of scientific findings – involving everything from our lack of free will to Martian methane that offers new evidence of life on the planet – Michael Brooks argues that the things we don’t understand are the key to what we are about to discover.

This mind-boggling but entirely accessible survey of the outer limits of human knowledge is based on a short article by Michael Brooks for New Scientist magazine. It became the sixth most circulated story on the internet in 2005, and provoked widespread comment and compliments (Google “13 things that do not make sense” to see).

Michael Brooks has now dug deeply into those mysteries, with extraordinary results.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9781861976475: 13 Things That Don't Make Sense: The Most Intriguing Scientific Mysteries of Our Time

Edition présentée

ISBN 10 : 186197647X ISBN 13 : 9781861976475
Editeur : Profile Books Ltd, 2010
Couverture souple

9780307278814: 13 Things that Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time

Vintage, 2009
Couverture souple

9780385520683: 13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time

Doubleday, 2008
Couverture rigide

9781861978172: 13 Things That Don't Make Sense: The Most Intriguing Scientific Mysteries of Our Time

Profil..., 2009
Couverture souple

9780385664240: 13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time

Anchor..., 2009
Couverture souple

Meilleurs résultats de recherche sur AbeBooks

Image de l'éditeur

Brooks, Michael
Edité par Doubleday Canada (2008)
ISBN 10 : 0385664230 ISBN 13 : 9780385664233
Neuf Couverture rigide Quantité disponible : 1
(LOS ANGELES, CA, Etats-Unis)
Evaluation vendeur

Description du livre Etat : New. New. N° de réf. du vendeur Q-0385664230

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 66,34
Autre devise

Ajouter au panier

Frais de port : EUR 4,81
Vers Etats-Unis
Destinations, frais et délais