This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc., and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : ThriftBooks-Dallas, Dallas, TX, Etats-Unis
Paperback. Etat : Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.6. N° de réf. du vendeur G0387908102I4N10
Quantité disponible : 1 disponible(s)
Vendeur : Phatpocket Limited, Waltham Abbey, HERTS, Royaume-Uni
Etat : Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. N° de réf. du vendeur Z1-J-031-01664
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580173816
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387908106_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape. 188 pp. Englisch. N° de réf. du vendeur 9780387908106
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for as. N° de réf. du vendeur 5911758
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 183 pages. 9.25x6.10x0.43 inches. In Stock. N° de réf. du vendeur x-0387908102
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Asymptotic Optimal Inference for Non-ergodic Models | I. V. Basawa (u. a.) | Taschenbuch | xiii | Englisch | 1983 | Springer | EAN 9780387908106 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 107102196
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. N° de réf. du vendeur 9780387908106
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape. N° de réf. du vendeur 9780387908106
Quantité disponible : 1 disponible(s)