Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be- cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica- tion. They have none-the-less stressed the importance of such optimali- ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum- ed model.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,95 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisEUR 6,85 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Antiquariat Lücke, Einzelunternehmung, Schweinfurt, Allemagne
Kartoniert. Etat : Gut. 25 cm Lecture Notes in Statistics, 26. VII, 286 S. Orig.-Karton. Mit graphischen Darstellungen. Gutes Exemplar. N° de réf. du vendeur 31035
Quantité disponible : 1 disponible(s)
Vendeur : Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Etats-Unis
Paperback. Etat : Fair. Paper browned, otherwise text clean and solid; Lecture Notes in Statistics; 9.61 X 6.69 X 0.68 inches; 286 pages. N° de réf. du vendeur 223500
Quantité disponible : 1 disponible(s)
Vendeur : CONTINENTAL MEDIA & BEYOND, Ocala, FL, Etats-Unis
Etat : Used: Good. former library 1984 paperback vol 26 withdrawn stamp in book/ on edge of pages clean text tanned pages 286 pages/// K-13. N° de réf. du vendeur 0129N0FBC8V
Quantité disponible : 1 disponible(s)
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9780387961026
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580174697
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387961026_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to 'second order' has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model. 300 pp. Englisch. N° de réf. du vendeur 9780387961026
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gauss. N° de réf. du vendeur 5912662
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 300 1st Edition. N° de réf. du vendeur 263889852
Quantité disponible : 4 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 512. N° de réf. du vendeur C9780387961026
Quantité disponible : Plus de 20 disponibles