Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.
Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning.Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Sudipan Saha is currently an Assistant Professor at Yardi School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi, India. Previously, he worked as a postdoctoral researcher at the Artificial Intelligence for Earth Observation (AI4EO) Lab, Technical University of Munich, Germany (2020-2022). He received a Ph.D. degree in Information and Communication Technologies from the University of Trento and Fondazione Bruno Kessler (FBK), Trento, Italy in 2020, working with Dr. Francesca Bovolo and Prof. Lorenzo Bruzzone. He is the recipient of FBK Best Student Award 2020. Previously, he obtained the M.Tech. degree in Electrical Engineering from IIT Bombay, Mumbai, India in 2014 where he is recipient of Postgraduate Color. He worked as an Engineer with TSMC Limited, Hsinchu, Taiwan, from 2015 to 2016. His research interests are related to multi-temporal and multi-sensor satellite image analysis, uncertainty quantification, deep learning, and climate change.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 8 expédition depuis Italie vers Etats-Unis
Destinations, frais et délaisVendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur IXKESAICJ4
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 410714663
Quantité disponible : 3 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 350 pages. 9.00x6.00x8.93 inches. In Stock. N° de réf. du vendeur __0443264848
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26403488248
Quantité disponible : 3 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18403488242
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 1000. N° de réf. du vendeur B9780443264849
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780443264849
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning. N° de réf. du vendeur 9780443264849
Quantité disponible : 2 disponible(s)