Articles liés à Infinite Dimensional Topology: Prerequisites and Introductio...

Infinite Dimensional Topology: Prerequisites and Introduction - Couverture rigide

 
9780444871336: Infinite Dimensional Topology: Prerequisites and Introduction

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

The first part of this book is a text for graduate courses in topology. In chapters 1 - 5, part of the basic material of plane topology, combinatorial topology, dimension theory and ANR theory is presented. For a student who will go on in geometric or algebraic topology this material is a prerequisite for later work. Chapter 6 is an introduction to infinite-dimensional topology; it uses for the most part geometric methods, and gets to spectacular results fairly quickly. The second part of this book, chapters 7 & 8, is part of geometric topology and is meant for the more advanced mathematician interested in manifolds. The text is self-contained for readers with a modest knowledge of general topology and linear algebra; the necessary background material is collected in chapter 1, or developed as needed.One can look upon this book as a complete and self-contained proof of Toruńczyk's Hilbert cube manifold characterization theorem: a compact ANR X is a manifold modeled on the Hilbert cube if and only if X satisfies the disjoint-cells property. In the process of proving this result several interesting and useful detours are made.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

The first part of this book is a text for graduate courses in topology. In chapters 1 - 5, part of the basic material of plane topology, combinatorial topology, dimension theory and ANR theory is presented. For a student who will go on in geometric or algebraic topology this material is a prerequisite for later work. Chapter 6 is an introduction to infinite-dimensional topology; it uses for the most part geometric methods, and gets to spectacular results fairly quickly. The second part of this book, chapters 7 & 8, is part of geometric topology and is meant for the more advanced mathematician interested in manifolds.

The text is self-contained for readers with a modest knowledge of general topology and linear algebra; the necessary background material is collected in chapter 1, or developed as needed.

One can look upon this book as a complete and self-contained proof of Toruńczyk's Hilbert cube manifold characterization theorem: a compact ANR X is a manifold modeled on the Hilbert cube if and only if X satisfies the disjoint-cells property. In the process of proving this result several interesting and useful detours are made.

Revue de presse

...recommended to anyone who wishes to get familiar with infinite-dimensional topology and at the same time learn about some its most beautiful results.
Zentralblatt für Mathematik

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande

Autres éditions populaires du même titre

9780444871343: Infinite Dimensional Topology: Prerequisites and Introduction

Edition présentée

ISBN 10 :  0444871349 ISBN 13 :  9780444871343
Editeur : North-Holland, 1989
Couverture souple