Discrepancies frequently occur between a physical system's responses and predictions obtained from mathematical models. The Spectral Stochastic Finite Element Method (SSFEM) has proven successful at forecasting a variety of uncertainties in calculating system responses. This text analyzes a class of discrete mathematical models of engineering systems, identifying key issues and reviewing relevant theoretical concepts, with particular attention to a spectral approach.
Random system parameters are modeled as second-order stochastic processes, defined by their mean and covariance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is employed to represent these processes in terms of a countable set of uncorrected random variables, casting the problem in a finite dimensional setting. Various spectral approximations for the stochastic response of the system are obtained. Implementing the concept of generalized inverse leads to an explicit expression for the response process as a multivariate polynomial functional of a set of uncorrelated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral representation is identified in terms of polynomial chaos. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Roger G. Ghanem is a Professor at University of Southern California's Department of Aerospace and Mechanical Engineering in Los Angeles.
Pol D. Spanos is the L. B. Ryon Chair in Engineering in the Department of Mechanical Engineering and Materials Science at Rice University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 1186891-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Stochastic Finite Elements: A Spectral Approach, Revised Edition. Book. N° de réf. du vendeur BBS-9780486428185
Quantité disponible : 5 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. Brand New. N° de réf. du vendeur 9780486428185
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 1186891
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780486428185
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Discrepancies frequently occur between a physical system's responses and predictions obtained from mathematical models. The Spectral Stochastic Finite Element Method (SSFEM) has proven successful at forecasting a variety of uncertainties in calculating system responses. This text analyses a class of discrete mathematical models of engineering systems, identifying key issues and reviewing relevant theoretical concepts, with particular attention to a spectral approach.Random system parameters are modeled as second-order stochastic processes, defined by their mean and covariance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is employed to represent these processes in terms of a countable set of uncorrected random variables, casting the problem in a finite dimensional setting. Various spectral approximations for the stochastic response of the system are obtained. Implementing the concept of generalized inverse leads to an explicit expression for the response process as a multivariate polynomial functional of a set of uncorrelated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral representation is identified in terms of polynomial chaos. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials. This text analyzes a class of discrete mathematical models of engineering systems, identifying key issues and reviewing relevant theoretical concepts, with particular attention to a spectral approach. 1991 edition. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780486428185
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 240. N° de réf. du vendeur 2642961303
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. revised edition. 222 pages. 8.25x5.25x0.75 inches. In Stock. N° de réf. du vendeur x-0486428184
Quantité disponible : 2 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-ING-9780486428185
Quantité disponible : 20 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 1186891-n
Quantité disponible : Plus de 20 disponibles