Neural Network Learning This book describes theoretical advances in the study of artificial neural networks. Full description
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik–Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik–Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics.
'The book is a useful and readable mongraph. For beginners it is a nice introduction to the subject, for experts a valuable reference.' Zentralblatt MATH
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 3,55 expédition vers Etats-Unis
Destinations, frais et délaisEUR 3,55 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : TextbookRush, Grandview Heights, OH, Etats-Unis
Etat : Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. N° de réf. du vendeur 52284459
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books: West, Reno, NV, Etats-Unis
Etat : Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. N° de réf. du vendeur 12356663-75
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580243894
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 6952043-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521118620_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521118620
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 1st edition. 403 pages. 8.75x5.75x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __052111862X
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
Paperback. Etat : new. Paperback. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780521118620
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 6952043-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9780521118620
Quantité disponible : 10 disponible(s)