This book, first published in 2000, is a concise introduction to ring theory, module theory and number theory, ideal for a first year graduate student, as well as an excellent reference for working mathematicians in other areas. Starting from definitions, the book introduces fundamental constructions of rings and modules, as direct sums or products, and by exact sequences. It then explores the structure of modules over various types of ring: noncommutative polynomial rings, Artinian rings (both semisimple and not), and Dedekind domains. It also shows how Dedekind domains arise in number theory, and explicitly calculates some rings of integers and their class groups. About 200 exercises complement the text and introduce further topics. This book provides the background material for the authors' companion volume Categories and Modules, soon to appear. Armed with these two texts, the reader will be ready for more advanced topics in K-theory, homological algebra and algebraic number theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book, first published in 2000, is a concise introduction to ring theory, module theory and number theory, ideal for a first year graduate student, as well as an excellent reference for working mathematicians in other areas. Starting from definitions, the book introduces fundamental constructions of rings and modules, as direct sums or products, and by exact sequences. It then explores the structure of modules over various types of ring: noncommutative polynomial rings, Artinian rings (both semisimple and not), and Dedekind domains. It also shows how Dedekind domains arise in number theory, and explicitly calculates some rings of integers and their class groups. About 200 exercises complement the text and introduce further topics. This book provides the background material for the authors' companion volume Categories and Modules, soon to appear. Armed with these two texts, the reader will be ready for more advanced topics in K-theory, homological algebra and algebraic number theory.
'... an excellent concise introduction to the theory of rings and modules ...'. Tong Wenting, Zentralblatt MATH
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Wonder Book, Frederick, MD, Etats-Unis
Etat : Very Good. Very Good condition. A copy that may have a few cosmetic defects. May also contain light spine creasing or a few markings such as an owner's name, short gifter's inscription or light stamp. N° de réf. du vendeur V12B-04084
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariaat Ovidius, Bredevoort, Pays-Bas
Etat : Gebraucht / Used. Hardcover. Good. Xiii,265pp. N° de réf. du vendeur 105075
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190010292
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 433547-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Studibuch, Stuttgart, Allemagne
hardcover. Etat : Sehr gut. 284 Seiten; 9780521632744.2 Gewicht in Gramm: 1. N° de réf. du vendeur 1033263
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521632744
Quantité disponible : Plus de 20 disponibles
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
Karton. Etat : Sehr gut. Zust: Gutes Exemplar. 265 Seiten, mit Abbildungen Englisch 508g. N° de réf. du vendeur 360778
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521632744_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BennettBooksLtd, San Diego, NV, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-0521632749
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. This is a concise introduction to ring theory, module theory and number theory, ideal for a first year graduate student, as well as an excellent reference for working mathematicians in other areas. Starting from definitions, the book introduces fundamental constructions of rings and modules, as direct sums or products, and by exact sequences. It then explores the structure of modules over various types of ring: noncommutative polynomial rings, Artinian rings (both semisimple and not), and Dedekind domains. It also shows how Dedekind domains arise in number theory, and explicitly calculates some rings of integers and their class groups. About 200 exercises complement the text and introduce further topics. This book provides the background material for the authors' companion volume Categories and Modules, soon to appear. Armed with these two texts, the reader will be ready for more advanced topics in K-theory, homological algebra and algebraic number theory. This concise introduction to ring theory, module theory and number theory is ideal for a first year graduate student, as well as being an excellent reference for working mathematicians in other areas. Starting from definitions, the book introduces fundamental constructions of rings and modules, as direct sums or products, and by exact sequences. It then explores the structure of modules over various types of ring: noncommutative polynomial rings, Artinian rings (both semisimple and not), and Dedekind domains. It also shows how Dedekind domains arise in number theory, and explicitly calculates some rings of integers and their class groups. About 200 exercises complement the text and introduce further topics. This book provides the background material for the authors' forthcoming companion volume Categories and Modules. Armed with these two texts, the reader will be ready for more advanced topics in K-theory, homological algebra and algebraic number theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780521632744
Quantité disponible : 1 disponible(s)