Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ben Leimkuhler is Professor of Applied Mathematics, and Director of the Centre for Mathematical Modelling at the University of Leicester.
Sebastian Reich is Professor of Computational and Mathematical Modelling at Imperial College London.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Antiquariaat Ovidius, Bredevoort, Pays-Bas
Etat : Gebraucht / Used. Fine state d575e. N° de réf. du vendeur 74470
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. Volume 14. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,850grams, ISBN:9780521772907. N° de réf. du vendeur 3965299
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190014484
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 1752915-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 1752915
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521772907_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 1752915-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 379 pages. 9.00x6.00x1.00 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0521772907
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject. The simulation of matter by direct computation of individual atomic motions has become an important element in the design of new drugs and in the construction of new materials. This book demonstrates how to implement the numerical techniques needed for such simulation, thereby aiding the design of new, faster, and more robust solution schemes. Clear explanations and many examples and exercises will ensure the value of this text for students, professionals, and researchers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780521772907
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 1752915
Quantité disponible : Plus de 20 disponibles