As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Zeljko Ivezi? is professor of astronomy at the University of Washington. Andrew J. Connolly is professor of astronomy at the University of Washington. Jacob T. VanderPlas is an NSF postdoctoral research fellow in astronomy and computer science at the University of Washington. Alexander Gray is professor of computer science at Georgia Institute of Technology.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 64,20 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 25,68 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Michael Knight, Bookseller, Forest Grove, OR, Etats-Unis
hardcover. Etat : Very Good. Hardcover issued without dust-jacket. Clean and solid. No tears, stains, or odors. NOT ex-library. N° de réf. du vendeur mon0000010451
Quantité disponible : 2 disponible(s)
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Hardcover. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned0691151687
Quantité disponible : 1 disponible(s)
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 158711
Quantité disponible : 13 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
Hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_433718302
Quantité disponible : 1 disponible(s)
Vendeur : dsmbooks, Liverpool, Royaume-Uni
Hardcover. Etat : Very Good. Very Good. book. N° de réf. du vendeur D8S0-3-M-0691151687-6
Quantité disponible : 1 disponible(s)