This book presents a comprehensive treatment of necessary conditions for general optimization problems. The presentation is carried out in the context of a general theory for extremal problems in a topological vector space setting.
Following a brief summary of the required background, generalized Lagrange multiplier rules are derived for optimization problems with equality and generalized "inequality" constraints. The treatment stresses the importance of the choice of the underlying set over which the optimization is to be performed, the delicate balance between differentiability-continuity requirements on the constraint functionals, and the manner in which the underlying set is approximated by a convex set. The generalized multiplier rules are used to derive abstract maximum principles for classes of optimization problems defined in terms of operator equations in a Banach space. It is shown that special cases include the usual maximum principles for general optimal control problems described in terms of diverse systems such as ordinary differential equations, functional differential equations, Volterra integral equations, and difference equations. Careful distinction is made throughout the analysis between "local" and "global" maximum principles. Originally published in 1977. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book presents a comprehensive treatment of necessary conditions for general optimization problems. The presentation is carried out in the context of a general theory for extremal problems in a topological vector space setting. Following a brief summary of the required background, generalized Lagrange multiplier rules are derived for optimization problems with equality and generalized "inequality" constraints. The treatment stresses the importance of the choice of the underlying set over which the optimization is to be performed, the delicate balance between differentiability-continuity requirements on the constraint functionals, and the manner in which the underlying set is approximated by a convex set. The generalized multiplier rules are used to derive abstract maximum principles for classes of optimization problems defined in terms of operator equations in a Banach space. It is shown that special cases include the usual maximum principles for general optimal control problems described in terms of diverse systems such as ordinary differential equations, functional differential equations, Volterra integral equations, and difference equations. Careful distinction is made throughout the analysis between "local" and "global" maximum principles. Originally published in 1977. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Über den AutorLucien W. NeustadtKlappentextrnrnThis book presents a comprehensive treatment of necessary conditions for general optimization problems. The presentation is carried out in the context of a general t. N° de réf. du vendeur 447035637
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190108698
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Optimization | A Theory of Necessary Conditions | Lucien W. Neustadt | Buch | Einband - fest (Hardcover) | Englisch | 2016 | Princeton University Press | EAN 9780691644042 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 123699081
Quantité disponible : 5 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. This book presents a comprehensive treatment of necessary conditions for general optimization problems. The presentation is carried out in the context of a general theory for extremal problems in a topological vector space setting. Following a brief summary of the required background, generalized Lagrange multiplier rules are derived for optimization problems with equality and generalized "inequality" constraints. The treatment stresses the importance of the choice of the underlying set over which the optimization is to be performed, the delicate balance between differentiability-continuity requirements on the constraint functionals, and the manner in which the underlying set is approximated by a convex set. The generalized multiplier rules are used to derive abstract maximum principles for classes of optimization problems defined in terms of operator equations in a Banach space. It is shown that special cases include the usual maximum principles for general optimal control problems described in terms of diverse systems such as ordinary differential equations, functional differential equations, Volterra integral equations, and difference equations.Careful distinction is made throughout the analysis between "local" and "global" maximum principles. Originally published in 1977. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. N° de réf. du vendeur LU-9780691644042
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book presents a comprehensive treatment of necessary conditions for general optimization problems. The presentation is carried out in the context of a general theory for extremal problems in a topological vector space setting.Following a brief summary of the required background, generalized Lagrange multiplier rules are derived for optimization problems with equality and generalized 'inequality' constraints. The treatment stresses the importance of the choice of the underlying set over which the optimization is to be performed, the delicate balance between differentiability-continuity requirements on the constraint functionals, and the manner in which the underlying set is approximated by a convex set. The generalized multiplier rules are used to derive abstract maximum principles for classes of optimization problems defined in terms of operator equations in a Banach space. It is shown that special cases include the usual maximum principles for general optimal control problems described in terms of diverse systems such as ordinary differential equations, functional differential equations, Volterra integral equations, and difference equations. Careful distinction is made throughout the analysis between 'local' and 'global' maximum principles.Originally published in 1977.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. N° de réf. du vendeur 9780691644042
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. This book presents a comprehensive treatment of necessary conditions for general optimization problems. The presentation is carried out in the context of a general theory for extremal problems in a topological vector space setting. Following a brief summary of the required background, generalized Lagrange multiplier rules are derived for optimization problems with equality and generalized "inequality" constraints. The treatment stresses the importance of the choice of the underlying set over which the optimization is to be performed, the delicate balance between differentiability-continuity requirements on the constraint functionals, and the manner in which the underlying set is approximated by a convex set. The generalized multiplier rules are used to derive abstract maximum principles for classes of optimization problems defined in terms of operator equations in a Banach space. It is shown that special cases include the usual maximum principles for general optimal control problems described in terms of diverse systems such as ordinary differential equations, functional differential equations, Volterra integral equations, and difference equations.Careful distinction is made throughout the analysis between "local" and "global" maximum principles. Originally published in 1977. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. N° de réf. du vendeur LU-9780691644042
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 440 pages. 9.25x6.12x1.00 inches. In Stock. N° de réf. du vendeur x-0691644047
Quantité disponible : 2 disponible(s)