Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models.
To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied.
The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 1360033/202
Quantité disponible : 1 disponible(s)
Vendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
Etat : Very Good. 260 pp., Hardcover, library markings, small wear mark to the spine, else text clean & binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. N° de réf. du vendeur ZB1298433
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and. N° de réf. du vendeur 5970718
Quantité disponible : Plus de 20 disponibles
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9780792381549
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 269387-n
Quantité disponible : 15 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author. 284 pp. Englisch. N° de réf. du vendeur 9780792381549
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models.To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied.The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch. N° de réf. du vendeur 9780792381549
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780792381549_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author. N° de réf. du vendeur 9780792381549
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 269387
Quantité disponible : 15 disponible(s)