Introduction to the $h$-Principle (Graduate Studies in Mathematics, V 48)

Note moyenne 5
( 1 avis fournis par Goodreads )
 
9780821832271: Introduction to the $h$-Principle (Graduate Studies in Mathematics, V 48)

In differential geometry and topology one often deals with systems of partial differential equations, as well as partial differential inequalities, that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the fifties that the solvability of differential relations (i.e. equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle.The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis in the book is made on applications to symplectic and contact geometry. Gromov's famous book ""Partial Differential Relations"", which is devoted to the same subject, is an encyclopedia of the $h$-principle, written for experts, while the present book is the first broadly accessible exposition of the theory and its applications. The book would be an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists and analysts will also find much value in this very readable exposition of an important and remarkable topic.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Meilleurs résultats de recherche sur AbeBooks

1.

Eliashberg, Y.; Mishachev, N.
Edité par Amer Mathematical Society (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : > 20
Vendeur
Sequitur Books
(Boonsboro, MD, Etats-Unis)
Evaluation vendeur
[?]

Description du livre Amer Mathematical Society, 2002. Hardcover. État : New. Brand new. We distribute directly for the publisher. Clean, unmarked pages. Fine binding and cover. Ships daily. N° de réf. du libraire 1411040059

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 28,72
Autre devise

Ajouter au panier

Frais de port : EUR 3,40
Vers Etats-Unis
Destinations, frais et délais

2.

Yakov Eliashberg, N. Mishachev
Edité par American Mathematical Society, United States (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 1
Vendeur
The Book Depository
(London, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, United States, 2002. Hardback. État : New. Language: English . Brand New Book. In differential geometry and topology one often deals with systems of partial differential equations, as well as partial differential inequalities, that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the fifties that the solvability of differential relations (i.e. equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle.The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis in the book is made on applications to symplectic and contact geometry.Gromov s famous book Partial Differential Relations , which is devoted to the same subject, is an encyclopedia of the $h$-principle, written for experts, while the present book is the first broadly accessible exposition of the theory and its applications. The book would be an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists and analysts will also find much value in this very readable exposition of an important and remarkable topic. N° de réf. du libraire AAN9780821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 37,06
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

3.

Yakov Eliashberg, N. Mishachev
Edité par American Mathematical Society, United States (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 1
Vendeur
The Book Depository US
(London, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, United States, 2002. Hardback. État : New. Language: English . Brand New Book. In differential geometry and topology one often deals with systems of partial differential equations, as well as partial differential inequalities, that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the fifties that the solvability of differential relations (i.e. equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle.The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis in the book is made on applications to symplectic and contact geometry. Gromov s famous book Partial Differential Relations , which is devoted to the same subject, is an encyclopedia of the $h$-principle, written for experts, while the present book is the first broadly accessible exposition of the theory and its applications. The book would be an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists and analysts will also find much value in this very readable exposition of an important and remarkable topic. N° de réf. du libraire AAN9780821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 37,11
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

4.

Yakov Eliashberg, N. Mishachev
Edité par American Mathematical Society
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 1
Vendeur
THE SAINT BOOKSTORE
(Southport, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre American Mathematical Society. Hardback. État : new. BRAND NEW, Introduction to the H-principle, Yakov Eliashberg, N. Mishachev, In differential geometry and topology one often deals with systems of partial differential equations, as well as partial differential inequalities, that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the fifties that the solvability of differential relations (i.e. equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle.The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis in the book is made on applications to symplectic and contact geometry. Gromov's famous book ""Partial Differential Relations"", which is devoted to the same subject, is an encyclopedia of the $h$-principle, written for experts, while the present book is the first broadly accessible exposition of the theory and its applications. The book would be an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists and analysts will also find much value in this very readable exposition of an important and remarkable topic. N° de réf. du libraire B9780821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 33,43
Autre devise

Ajouter au panier

Frais de port : EUR 7,61
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

5.

Y. Eliashberg; N. Mishachev
Edité par Amer Mathematical Society (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 1
Vendeur
Irish Booksellers
(Rumford, ME, Etats-Unis)
Evaluation vendeur
[?]

Description du livre Amer Mathematical Society, 2002. Hardcover. État : New. book. N° de réf. du libraire M0821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 46,71
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

6.

Y. Eliashberg, N. Mishachev
Edité par Amer Mathematical Society (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 1
Vendeur
Ergodebooks
(RICHMOND, TX, Etats-Unis)
Evaluation vendeur
[?]

Description du livre Amer Mathematical Society, 2002. Hardcover. État : New. N° de réf. du libraire DADAX0821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 44,35
Autre devise

Ajouter au panier

Frais de port : EUR 3,39
Vers Etats-Unis
Destinations, frais et délais

7.

Y. Eliashberg/ N. Mishachev
Edité par Amer Mathematical Society (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 2
Vendeur
Revaluation Books
(Exeter, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre Amer Mathematical Society, 2002. Hardcover. État : Brand New. 206 pages. 10.00x7.00x0.75 inches. In Stock. N° de réf. du libraire __0821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 45,31
Autre devise

Ajouter au panier

Frais de port : EUR 6,57
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

8.

Eliashberg, Y.
Edité par Amer Mathematical Society
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Quantité : 1
Vendeur
Ohmsoft LLC
(Lake Forest, IL, Etats-Unis)
Evaluation vendeur
[?]

Description du livre Amer Mathematical Society. État : Brand New. Ships from USA. FREE domestic shipping. N° de réf. du libraire 0821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 51,91
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

9.

Eliashberg, Y., Mishachev, N.
Edité par Amer Mathematical Society (2002)
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Couverture rigide Quantité : 2
Vendeur
Murray Media
(North Miami Beach, FL, Etats-Unis)
Evaluation vendeur
[?]

Description du livre Amer Mathematical Society, 2002. Hardcover. État : New. Never used!. N° de réf. du libraire P110821832271

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 57,23
Autre devise

Ajouter au panier

Frais de port : EUR 1,69
Vers Etats-Unis
Destinations, frais et délais

10.

N Mishachev and Y. Eliashberg
ISBN 10 : 0821832271 ISBN 13 : 9780821832271
Neuf(s) Quantité : 1
Vendeur
Castle Rock
(Pittsford, NY, Etats-Unis)
Evaluation vendeur
[?]

Description du livre État : Brand New. Book Condition: Brand New. N° de réf. du libraire 97808218322711.0

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 62,53
Autre devise

Ajouter au panier

Frais de port : EUR 3,39
Vers Etats-Unis
Destinations, frais et délais