Articles liés à Zeta Functions for Two-Dimensional Shifts of Finite...

Zeta Functions for Two-Dimensional Shifts of Finite Type - Couverture souple

 
9780821872901: Zeta Functions for Two-Dimensional Shifts of Finite Type

Synopsis

This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $\zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $\mathbb{Z}^{2}$-action $\phi$. In this paper, the $n$th-order zeta function $\zeta_{n}$ of $\phi$ on $\mathbb{Z}_{n\times \infty}$, $n\geq 1$, is studied first. The trace operator $\mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $\mathbf{T}_{n}$ induces the reduced trace operator $\tau_{n}$ and $\zeta_{n}=\left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$. The zeta function $\zeta=\prod_{n=1}^{\infty} \left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(\mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $\zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Ex-library in GOOD condition with...
Afficher cet article
EUR 24,50

Autre devise

EUR 7 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Zeta Functions for Two-Dimensional Shifts of Finite...

Image fournie par le vendeur

Ban, Jungchao; Hu, Wen-guei; Lin, Song-sun; Lin, Yin-heng
ISBN 10 : 0821872907 ISBN 13 : 9780821872901
Ancien ou d'occasion Softcover

Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00372 9780821872901 Sprache: Englisch Gewicht in Gramm: 150. N° de réf. du vendeur 2482882

Contacter le vendeur

Acheter D'occasion

EUR 24,50
Autre devise
Frais de port : EUR 7
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier