This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Daniel Sanz-Alonso is Assistant Professor in the Committee on Computational and Applied Mathematics within the Department of Statistics at the University of Chicago. His contributions to inverse problems and data assimilation have been recognized with a José Luis Rubio de Francia prize and an NSF CAREER award.
Andrew Stuart is Professor in the Computing and Mathematical Sciences Department within the Division of Engineering and Applied Sciences at Caltech. He is well known for his work in applied and computational mathematics, in the areas of dynamical systems, inverse problems, data assimilation, and machine learning.
Armeen Taeb is Assistant Professor in the Department of Statistics at the University of Washington. His work focuses on developing efficient methods for graphical modeling and latent-variable modeling, learning causal relations from data, and model selection in contemporary data analysis settings. His PhD thesis received the W. P. Carey & Co. Prize for outstanding dissertation in applied mathematics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,39 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 6,90 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781009414296
Quantité disponible : 3 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781009414296_new
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 330. N° de réf. du vendeur C9781009414296
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 221 pages. 8.98x5.87x0.51 inches. In Stock. N° de réf. du vendeur __1009414291
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-GRD-9781009414296
Quantité disponible : 3 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2023. Paperback. . . . . . N° de réf. du vendeur V9781009414296
Quantité disponible : 3 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781009414296
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Inverse Problems and Data Assimilation. Book. N° de réf. du vendeur BBS-9781009414296
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 46044326-n
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study. N° de réf. du vendeur 9781009414296
Quantité disponible : 7 disponible(s)