A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we discuss several different types of purity, based on different measures of distance between theorem and proof. In Section 4 we discuss reasons for preferring pure proofs, for the varieties of purity constraints presented in Section 3. In Section 5 we conclude by reflecting briefly on purity as a preference for the local and how issues of translation intersect with the considerations we have raised throughout this work.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 5,77 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 3,62 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : AwesomeBooks, Wallingford, Royaume-Uni
hardcover. Etat : Very Good. Elements of Purity (Elements in the Philosophy of Mathematics) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. N° de réf. du vendeur 7719-9781009539708
Quantité disponible : 1 disponible(s)
Vendeur : Bahamut Media, Reading, Royaume-Uni
hardcover. Etat : Very Good. This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. N° de réf. du vendeur 6545-9781009539708
Quantité disponible : 1 disponible(s)
Vendeur : GoldBooks, Denver, CO, Etats-Unis
Etat : new. N° de réf. du vendeur 30J71_56_1009539701
Quantité disponible : 1 disponible(s)
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781009539708
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 49380899-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49380899
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Hardcover. Etat : new. Hardcover. A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we discuss several different types of purity, based on different measures of distance between theorem and proof. In Section 4 we discuss reasons for preferring pure proofs, for the varieties of purity constraints presented in Section 3. In Section 5 we conclude by reflecting briefly on purity as a preference for the local and how issues of translation intersect with the considerations we have raised throughout this work. This Element explores the preference for pure proofs in mathematics since antiquity, focusing on geometry and number theory. It discusses different types of purity, reasons for preferring pure proofs, and the importance of local purity. It also touches on translation issues and the relationship between purity and local considerations. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781009539708
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26403490916
Quantité disponible : 4 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781009539708_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Hardback. Etat : New. A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we discuss several different types of purity, based on different measures of distance between theorem and proof. In Section 4 we discuss reasons for preferring pure proofs, for the varieties of purity constraints presented in Section 3. In Section 5 we conclude by reflecting briefly on purity as a preference for the local and how issues of translation intersect with the considerations we have raised throughout this work. N° de réf. du vendeur LU-9781009539708
Quantité disponible : Plus de 20 disponibles