Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Tor Lattimore is a research scientist at DeepMind. His research is focused on decision making in the face of uncertainty, including bandit algorithms and reinforcement learning. Before joining DeepMind he was an assistant professor at Indiana University and a postdoctoral fellow at the University of Alberta.
Csaba Szepesvári is a Professor in the Department of Computing Science at the University of Alberta and a Principal Investigator of the Alberta Machine Intelligence Institute. He also leads the 'Foundations' team at DeepMind. He has co-authored a book on nonlinear approximate adaptive controllers and authored a book on reinforcement learning, in addition to publishing over 200 journal and conference papers. He is an action editor of the Journal of Machine Learning Research.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 12,73 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 7,11 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Very Good. N° de réf. du vendeur mon0003612403
Quantité disponible : 1 disponible(s)
Vendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781108486828
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781108486828_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781108486828
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Hardback or Cased Book. Etat : New. Bandit Algorithms 2.3. Book. N° de réf. du vendeur BBS-9781108486828
Quantité disponible : 5 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 517 pages. 9.50x7.00x1.25 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1108486827
Quantité disponible : 1 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2020. Hardcover. . . . . . N° de réf. du vendeur V9781108486828
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 40407250-n
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1220. N° de réf. du vendeur C9781108486828
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for gra. N° de réf. du vendeur 343725629
Quantité disponible : 2 disponible(s)