'An introduction to computational Bayesian statistics cooked to perfection, with the right mix of ingredients, from the spirited defense of the Bayesian approach, to the description of the tools of the Bayesian trade, to a definitely broad and very much up-to-date presentation of Monte Carlo and Laplace approximation methods, to a helpful description of the most common software. And spiced up with critical perspectives on some common practices and a healthy focus on model assessment and model selection. Highly recommended on the menu of Bayesian textbooks!' Christian Robert, Université de Paris IX, Paris-Dauphine, and University of Warwick
'This book aims to be a concise introduction to modern computational Bayesian statistics, and it certainly succeeds! The authors carefully introduce every main technique that is around and demonstrate its use with the appropriate software. Additionally, the book contains a readable introduction to Bayesian methods, and brings the reader up to speed within the field in no time!' Håvard Rue, King Abdullah University of Science and Technology, Saudi Arabia
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,47 expédition vers Etats-Unis
Destinations, frais et délaisEUR 3,57 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Friends of the Multnomah County Library, Portland, OR, Etats-Unis
Softcover. Etat : Good. Front hinge page starting, but otherwise clean pages tightly bound. N° de réf. du vendeur 301202511
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530286373
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 33846984-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 33846984
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781108703741_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
Paperback. Etat : new. Paperback. Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics. This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user's guide for researchers and graduate students from beyond statistics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781108703741
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 243 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __1108703747
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 254. N° de réf. du vendeur 26379249514
Quantité disponible : 1 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 412. N° de réf. du vendeur C9781108703741
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 254. N° de réf. du vendeur 384654517
Quantité disponible : 1 disponible(s)