This book provides a starting point for software professionals to apply artificial neural networks for software reliability prediction without having analyst capability and expertise in various ANN architectures and their optimization.
Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process are presented. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Manjubala Bisi is currently an Assistant Professor in the Computer Science and Engineering Department, Kakatiya Institute of Technology and Science, Warangal, Telengana, India. She received her PhD from the Indian Institute of Technology Kharagpur in Reliability Engineering in 2015. Her research interests include software reliability modelling, artificial neural networks and soft computing techniques.
Neeraj Kumar Goyal is currently an Associate Professor in Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India. He received his PhD from IIT Kharagpur in Reliability Engineering in 2006. His major areas of research are network /system reliability and software reliability. He has completed various research and consultancy projects for various organizations, e.g. DRDO, NPCIL, Vodafone, ECIL etc. He has contributed research papers to refereed international journals and conference proceedings.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,04 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 17,04 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 24792444-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781119223542
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Manjubala Bisi is currently an Assistant Professor in the Computer Science and Engineering Department, Kakatiya Institute of Technology and Science, Warangal, Telengana, India. She received her PhD from the Indian Institute of Technology Kharagpur in Reliab. N° de réf. du vendeur 447234383
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781119223542
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 24792444
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 24792444
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781119223542_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 24792444-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Hardcover. Etat : New. N° de réf. du vendeur 6666-WLY-9781119223542
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware - Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process is presented as well. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators. N° de réf. du vendeur 9781119223542
Quantité disponible : 2 disponible(s)