"This textbook is a well-rounded, rigorous, and informative work presenting the mathematics behind modern machine learning techniques. It hits all the right notes: the choice of topics is up-to-date and perfect for a course on data science for mathematics students at the advanced undergraduate or early graduate level. This book fills a sorely-needed gap in the existing literature by not sacrificing depth for breadth, presenting proofs of major theorems and subsequent derivations, as well as providing a copious amount of Python code. I only wish a book like this had been around when I first began my journey!" -Nicholas Hoell, University of Toronto
"This is a well-written book that provides a deeper dive into data-scientific methods than many introductory texts. The writing is clear, and the text logically builds up regularization, classification, and decision trees. Compared to its probable competitors, it carves out a unique niche. -Adam Loy, Carleton College
The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science.
Key Features:
Further Resources can be found on the authors website: https: //github.com/DSML-book/Lectures
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics at The University of Queensland. He has published over 120 articles and five books in a wide range of areas in mathematics, statistics, data science, machine learning, and Monte Carlo methods. He is a pioneer of the well-known Cross-Entropy method--an adaptive Monte Carlo technique, which is being used around the world to help solve difficult estimation and optimization problems in science, engineering, and finance.
Zdravko Botev, PhD, is an Australian Mathematical Science Institute Lecturer in Data Science and Machine Learning with an appointment at the University of New South Wales in Sydney, Australia. He is the recipient of the 2018 Christopher Heyde Medal of the Australian Academy of Science for distinguished research in the Mathematical Sciences.
Thomas Taimre, PhD, is a Senior Lecturer of Mathematics and Statistics at The University of Queensland.
His research interests range from applied probability and Monte Carlo methods to applied physics and the remarkably universal self-mixing effect in lasers. He has published over 100 articles, holds a patent, and is the coauthor of Handbook of Monte Carlo Methods (Wiley).
Radislav Vaisman, PhD, is a Lecturer of Mathematics and Statistics at The University of Queensland. His research interests lie at the intersection of applied probability, machine learning, and computer science. He has published over 20 articles and two books.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
Hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_433978437
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. "This textbook is a well-rounded, rigorous, and informative work presenting the mathematics behind modern machine learning techniques. It hits all the right notes: the choice of topics is up-to-date and perfect for a course on data science for mathematics students at the advanced undergraduate or early graduate level. This book fills a sorely-needed gap in the existing literature by not sacrificing depth for breadth, presenting proofs of major theorems and subsequent derivations, as well as providing a copious amount of Python code. I only wish a book like this had been around when I first began my journey!" -Nicholas Hoell, University of Toronto"This is a well-written book that provides a deeper dive into data-scientific methods than many introductory texts. The writing is clear, and the text logically builds up regularization, classification, and decision trees. Compared to its probable competitors, it carves out a unique niche. -Adam Loy, Carleton CollegeThe purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science.Key Features:Focuses on mathematical understanding.Presentation is self-contained, accessible, and comprehensive.Extensive list of exercises and worked-out examples.Many concrete algorithms with Python code.Full color throughout.Further Resources can be found on the authors website: The purpose of this book is to provide an accessible, yet comprehensive, account of data science and machine learning. It is intended for anyone interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781138492530
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-303936
Quantité disponible : 3 disponible(s)
Vendeur : ALLBOOKS1, Direk, SA, Australie
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. N° de réf. du vendeur SHAK303936
Quantité disponible : 3 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26376443783
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 369601624
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18376443789
Quantité disponible : 4 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. "This textbook is a well-rounded, rigorous, and informative work presenting the mathematics behind modern machine learning techniques. It hits all the right notes: the choice of topics is up-to-date and perfect for a course on data science for mathematics students at the advanced undergraduate or early graduate level. This book fills a sorely-needed gap in the existing literature by not sacrificing depth for breadth, presenting proofs of major theorems and subsequent derivations, as well as providing a copious amount of Python code. I only wish a book like this had been around when I first began my journey!" -Nicholas Hoell, University of Toronto"This is a well-written book that provides a deeper dive into data-scientific methods than many introductory texts. The writing is clear, and the text logically builds up regularization, classification, and decision trees. Compared to its probable competitors, it carves out a unique niche. -Adam Loy, Carleton CollegeThe purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science.Key Features:Focuses on mathematical understanding.Presentation is self-contained, accessible, and comprehensive.Extensive list of exercises and worked-out examples.Many concrete algorithms with Python code.Full color throughout.Further Resources can be found on the authors website: The purpose of this book is to provide an accessible, yet comprehensive, account of data science and machine learning. It is intended for anyone interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781138492530
Quantité disponible : 1 disponible(s)
Vendeur : Studibuch, Stuttgart, Allemagne
hardcover. Etat : Gut. 513 Seiten; 9781138492530.3 Gewicht in Gramm: 3. N° de réf. du vendeur 1038428
Quantité disponible : 1 disponible(s)
Vendeur : UK BOOKS STORE, London, LONDO, Royaume-Uni
Etat : New. Brand New! Fast Delivery This is an International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-12 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. N° de réf. du vendeur CVS 9781138492530
Quantité disponible : 9 disponible(s)