Excerpt from Parallel Implementation of Bisection for the Calculation of Eigenvalues of Tridiagonal Diagonal Symmetric Matrices
1. Introduction
Kuck and Sameh [9] noted that completion of a Givens or Householder eigenvalue algorithm on a parallel machine may be done by a parallel implementation of a bisection algorithm. In this paper we investigate the considerations involved in the implementation of this idea on an MIMD (multiple instruction stream - multiple data stream) machine with a smaller number of processors available than eigenvalues to be found.
There are three major alternatives to consider:
1. Convert the serial Sturm sequence code to a parallel algorithm.
2. For each interval compute more than one division point in parallel.
3. Process more than one interval at a time.
We will show that the last alternative has certain advantages for MIMD machines.
About the Publisher
Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com
This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Forgotten Books, London, Royaume-Uni
Paperback. Etat : New. Print on Demand. This book delves into the application of bisection for the computation of eigenvalues. The technique of bisection is a widely recognized numerical approach commonly used for approximating the roots of nonlinear equations. The author meticulously investigates how bisection can be effectively applied to determine the eigenvalues of a symmetric tridiagonal matrix. By exploring both sequential and parallel implementations of the bisection algorithm, the author provides valuable insights into the method's accuracy and efficiency. The book offers a comprehensive examination of the bisection method, making it an invaluable resource for researchers and practitioners seeking a deeper understanding of eigenvalue computation techniques. This book is a reproduction of an important historical work, digitally reconstructed using state-of-the-art technology to preserve the original format. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in the book. print-on-demand item. N° de réf. du vendeur 9781332175611_0
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur LW-9781332175611
Quantité disponible : 15 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur LW-9781332175611
Quantité disponible : 15 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 26 pages. 9.02x5.98x0.05 inches. In Stock. N° de réf. du vendeur __1332175619
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 26 pages. 9.02x5.98x0.05 inches. This item is printed on demand. N° de réf. du vendeur zk1332175619
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. N° de réf. du vendeur 26073912/1
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. N° de réf. du vendeur 26073912/2
Quantité disponible : 2 disponible(s)