Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus- tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster- ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad- dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for infor- mation retrieval. Crichton, Hughes, and Kelly elaborate on the devel- opment of a scientific data system architecture for information retrieval.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781402076824
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 2016455-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2411530144923
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781402076824_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 2016455-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for infor mation retrieval. Crichton, Hughes, and Kelly elaborate on the devel opment of a scientific data system architecture for information retrieval. 340 pp. Englisch. N° de réf. du vendeur 9781402076824
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. N° de réf. du vendeur 4095247
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 340. N° de réf. du vendeur 26323618
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Clustering and Information Retrieval | Weili Wu (u. a.) | Buch | viii | Englisch | 2003 | Springer US | EAN 9781402076824 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 102377459
Quantité disponible : 5 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 340 Illus. N° de réf. du vendeur 7557117
Quantité disponible : 1 disponible(s)