Articles liés à Pattern Recognition: Methods and Applications

Pattern Recognition: Methods and Applications - Couverture souple

 
9781477554821: Pattern Recognition: Methods and Applications

Synopsis

Pattern recognition - Methods and Applications includes contributions from university educators and active research experts. This book is intended to serve as a basic reference on pattern recognition, especially on the topics related to image and graphics processing, shape analysis, text processing, and bioinformatics analysis.

Chapter 1 proposes a review of traditional outlier detection methods and their recent enhancements. Some particular data representations are presented. A case-study based on a synthetic data is proposed in order to demonstrate the potential of a fuzzy logic approach which combines several techniques.

Chapter 2 studies the conditions for which the solution given by the Maximum Entropy Principle is equivalent to that given by Support Vector Machines. It describes a unifying framework that computes the probability density function and the optimal separating surface from examples.

Chapter 3 presents techniques for building multi-sensor fusion classifiers. A pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined, will be more diverse than any other component subset of the same size.

Chapter 4 proposes a neural-network-based differential evolution approach for face recognition (FR). The approach combines neural network classifiers and differential evolution updates, applies both 2D texture and 3D surface feature vectors, and effectively enhance the FR performance.

Chapter 5 proposes an efficient margin-based linear embedding method that exploits the nearest hit and the nearest miss samples only.

Chapter 6 proposes an efficient algorithm to construct the skeleton of a binary image as a geometric graph whose edges are Bezier curves 1 and 2 degrees.

Chapter 7 presents a novel structured light means with no coding procedure involved. By projecting a binary rhombic pattern, and computing the 3D surface normal at grid-points, the 3D reconstruction procedure can be realized via the proposed surface integration methods.

Chapter 8 focuses on exploring the potential of virtual worlds in order to train appearance-based models for pedestrian detections in ADAS. A de facto pedestrian detector is used for this task: a linear SVM with HOG features.

Chapter 9 proposes a technique for partially automating the creation of a large-scale dictionary or corpus. More specifically, this involves adding unknown words to an existing language resource; in this case, a thesaurus.

Chapter 10 proposes a probabilistic model that explicitly considers the document relations represented by links. A given document is modeled as a mixture of a set of topic distributions, each of which is borrowed (cited) from a document that is related to the given document.

Chapter 11 proposes a improve of the segmentation method by topic ClustSeg. The proposed improvement is a strategy to automatically calculate the threshold for deciding the cohesiveness between textual units. This proposal can be used by other methods of text segmentation by topic.

Chapter 12 proposes a comparative analysis of Wavelets, used as input attributes of support vector machines, which will be responsible for classification of pathological voices.

Chapter 13 introduces a complete methodology for automatic human chromosome classification. The methodology isolates the chromosomes from microscopic images, extracts their characteristic band profiles, and then classifies them.

Chapter 14 presents a compositional spectra approach for classifying bacterial genomes. The problem of bacteria classification arose long before the start of the Genomic Era.

Chapter 15 describes how spectroscopic and chromatographic methods coupled to pattern recognition multivariate algorithms can be an excellent tool for the determination of fuel compliance to technical specifications and origin determination purposes.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Satisfaisant
This is an ex-library book and...
Afficher cet article
EUR 27,37

Autre devise

EUR 7,26 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 97,41

Autre devise

EUR 6,94 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Pattern Recognition: Methods and Applications

Image d'archives

Hosny, Khalid
ISBN 10 : 1477554823 ISBN 13 : 9781477554821
Ancien ou d'occasion Couverture souple

Vendeur : Anybook.com, Lincoln, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,950grams, ISBN:9781477554821. N° de réf. du vendeur 8236099

Contacter le vendeur

Acheter D'occasion

EUR 27,37
Autre devise
Frais de port : EUR 7,26
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Hosny, Khalid
ISBN 10 : 1477554823 ISBN 13 : 9781477554821
Ancien ou d'occasion Couverture souple

Vendeur : Anybook.com, Lincoln, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,950grams, ISBN:9781477554821. N° de réf. du vendeur 8236098

Contacter le vendeur

Acheter D'occasion

EUR 27,43
Autre devise
Frais de port : EUR 7,26
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Hosny, Khalid; De La Calleja, Jorge
ISBN 10 : 1477554823 ISBN 13 : 9781477554821
Neuf Couverture souple
impression à la demande

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur I-9781477554821

Contacter le vendeur

Acheter neuf

EUR 97,41
Autre devise
Frais de port : EUR 6,94
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Jorge De La Calleja
ISBN 10 : 1477554823 ISBN 13 : 9781477554821
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 870. N° de réf. du vendeur C9781477554821

Contacter le vendeur

Acheter neuf

EUR 119,99
Autre devise
Frais de port : EUR 9,60
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Khalid Hosny
ISBN 10 : 1477554823 ISBN 13 : 9781477554821
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Pattern recognition - Methods and Applications includes contributions from university educators and active research experts. This book is intended to serve as a basic reference on pattern recognition, especially on the topics related to image and graphics processing, shape analysis, text processing, and bioinformatics analysis. Chapter 1 proposes a review of traditional outlier detection methods and their recent enhancements. Some particular data representations are presented. A case-study based on a synthetic data is proposed in order to demonstrate the potential of a fuzzy logic approach which combines several techniques. Chapter 2 studies the conditions for which the solution given by the Maximum Entropy Principle is equivalent to that given by Support Vector Machines. It describes a unifying framework that computes the probability density function and the optimal separating surface from examples. Chapter 3 presents techniques for building multi-sensor fusion classifiers. A pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined, will be more diverse than any other component subset of the same size. Chapter 4 proposes a neural-network-based differential evolution approach for face recognition (FR). The approach combines neural network classifiers and differential evolution updates, applies both 2D texture and 3D surface feature vectors, and effectively enhance the FR performance. Chapter 5 proposes an efficient margin-based linear embedding method that exploits the nearest hit and the nearest miss samples only. Chapter 6 proposes an efficient algorithm to construct the skeleton of a binary image as a geometric graph whose edges are Bezier curves 1 and 2 degrees. Chapter 7 presents a novel structured light means with no coding procedure involved. By projecting a binary rhombic pattern, and computing the 3D surface normal at grid-points, the 3D reconstruction procedure can be realized via the proposed surface integration methods. Chapter 8 focuses on exploring the potential of virtual worlds in order to train appearance-based models for pedestrian detections in ADAS. A de facto pedestrian detector is used for this task: a linear SVM with HOG features. Chapter 9 proposes a technique for partially automating the creation of a large-scale dictionary or corpus. More specifically, this involves adding unknown words to an existing language resource; in this case, a thesaurus. Chapter 10 proposes a probabilistic model that explicitly considers the document relations represented by links. A given document is modeled as a mixture of a set of topic distributions, each of which is borrowed (cited) from a document that is related to the given document. Chapter 11 proposes a improve of the segmentation method by topic ClustSeg. The proposed improvement is a strategy to automatically calculate the threshold for deciding the cohesiveness between textual units. This proposal can be used by other methods of text segmentation by topic. Chapter 12 proposes a comparative analysis of Wavelets, used as input attributes of support vector machines, which will be responsible for classification of pathological voices. Chapter 13 introduces a complete methodology for automatic human chromosome classification. The methodology isolates the chromosomes from microscopic images, extracts their characteristic band profiles, and then classifies them. Chapter 14 presents a compositional spectra approach for classifying bacterial genomes. The problem of bacteria classification arose long before the start of the Genomic Era. Chapter 15 describes how spectroscopic and chromatographic methods coupled to pattern recognition multivariate algorithms can be an excellent too Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781477554821

Contacter le vendeur

Acheter neuf

EUR 117,84
Autre devise
Frais de port : EUR 29,19
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier