Articles liés à Practical MATLAB Deep Learning: A Projects-Based Approach

Practical MATLAB Deep Learning: A Projects-Based Approach - Couverture souple

 
9781484279113: Practical MATLAB Deep Learning: A Projects-Based Approach

Synopsis

Harness the power of MATLAB for deep-learning challenges. Practical MATLAB Deep Learning, Second Edition, remains a one-of a-kind book that provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. In this book, you'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. This edition includes new and expanded projects, and covers generative deep learning and reinforcement learning.

Over the course of the book, you'll learn to model complex systems and apply deep learning to problems in those areas. Applications include:

  • Aircraft navigation
  • An aircraft that lands on Titan, the moon of Saturn, using reinforcement learning
  • Stock market prediction
  • Natural language processing
  • Music creation usng generative deep learning
  • Plasma control
  • Earth sensor processing for spacecraft
  • MATLAB Bluetooth data acquisition applied to dance physics


What You Will Learn
  • Explore deep learning using MATLAB and compare it to algorithms
  • Write a deep learning function in MATLAB and train it with examples
  • Use MATLAB toolboxes related to deep learning
  • Implement tokamak disruption prediction
  • Now includes reinforcement learning
Who This Book Is For
Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Michael Paluszek is the co-author of MATLAB Recipes published by Apress. He is President of Princeton Satellite Systems, Inc. (PSS) in Plainsboro, New Jersey. Mr. Paluszek founded PSS in 1992 to provide aerospace consulting services. He used MATLAB to develop the control system and simulation for the Indostar-1 geosynschronous communications satellite, resulting in the launch of PSS' first commercial MATLAB toolbox, the Spacecraft Control Toolbox, in 1995. Since then he has developed toolboxes and software packages for aircraft, submarines, robotics, and fusion propulsion, resulting in PSS' current extensive product line. He is currently leading an Army research contract for precision attitude control of small satellites and working with the Princeton Plasma Physics Laboratory on a compact nuclear fusion reactor for energy generation and propulsion. Prior to founding PSS, Mr. Paluszek was an engineer at GE Astro Space in East Windsor, NJ. At GE he designed the Global Geospace Science Polar despun platform control system and led the design of the GPS IIR attitude control system, the Inmarsat-3 attitude control systems and the Mars Observer delta-V control system, leveraging MATLAB for control design. Mr. Paluszek also worked on the attitude determination system for the DMSP meteorological satellites. Mr. Paluszek flew communication satellites on over twelve satellite launches, including the GSTAR III recovery, the first transfer of a satellite to an operational orbit using electric thrusters. At Draper Laboratory Mr. Paluszek worked on the Space Shuttle, Space Station and submarine navigation. His Space Station work included designing of Control Moment Gyro based control systems for attitude control. Mr. Paluszek received his bachelors in Electrical Engineering, and master's and engineer's degrees in Aeronautics and Astronautics from the Massachusetts Institute of Technology. He is author of numerous papers and has over a dozen U.S. Patents.
Stephanie Thomas is the co-author of MATLAB Recipes, published by Apress. She received her bachelor's and master's degrees in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 1999 and 2001. Ms. Thomas was introduced to PSS' Spacecraft Control Toolbox for MATLAB during a summer internship in 1996 and has been using MATLAB for aerospace analysis ever since. She built a simulation of a lunar transfer vehicle in C++, LunarPilot, during the same internship. In her nearly 20 years of MATLAB experience, she has developed many software tools including the Solar Sail Module for the Spacecraft Control Toolbox; a proximity satellite operations toolbox for the Air Force; collision monitoring Simulink blocks for the Prisma satellite mission; and launch vehicle analysis tools in MATLAB and Java, to name a few. She has developed novel methods for space situation assessment such as a numeric approach to assessing the general rendezvous problem between any two satellites implemented in both MATLAB and C++. Ms. Thomas has contributed to PSS' Attitude and Orbit Control textbook, featuring examples using the Spacecraft Control Toolbox, and written many software User's Guides. She has conducted SCT training for engineers from diverse locales such as Australia, Canada, Brazil, and Thailand and has performed MATLAB consulting for NASA, the Air Force, and the European Space Agency.
Eric Ham is a a Technical Specialist, Princeton Satellite Systems. His expertise lies with deep learning, programming using MATLAB, C++ and related.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 41,41

Autre devise

EUR 17,02 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Practical MATLAB Deep Learning: A Projects-Based Approach

Edition internationale
Edition internationale

Michael Paluszek,Stephanie Thomas,Eric Ham
Edité par Apress, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Couverture souple
Edition internationale

Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-208830

Contacter le vendeur

Acheter neuf

EUR 31,46
Autre devise
Frais de port : Gratuit
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Paluszek, Michael
Edité par Apress 9/25/2022, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Practical MATLAB Deep Learning: A Projects-Based Approach 1.35. Book. N° de réf. du vendeur BBS-9781484279113

Contacter le vendeur

Acheter neuf

EUR 39,08
Autre devise
Frais de port : EUR 10,64
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Paluszek, Michael; Thomas, Stephanie; Ham, Eric
Edité par Apress, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781484279113

Contacter le vendeur

Acheter neuf

EUR 43,84
Autre devise
Frais de port : EUR 6,81
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Paluszek, Michael; Thomas, Stephanie; Ham, Eric
Edité par Apress, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 43831393-n

Contacter le vendeur

Acheter neuf

EUR 36,76
Autre devise
Frais de port : EUR 17,02
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Eric Ham, Michael Paluszek, Stephanie Thomas
Edité par APress, US, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Paperback

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. 2nd ed. Harness the power of MATLAB for deep-learning challenges. Practical MATLAB Deep Learning, Second Edition, remains a one-of a-kind book that provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. In this book, you'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. This edition includes new and expanded projects, and covers generative deep learning and reinforcement learning.Over the course of the book, you'll learn to model complex systems and apply deep learning to problems in those areas. Applications include:Aircraft navigationAn aircraft that lands on Titan, the moon of Saturn, using reinforcement learningStock market predictionNatural language processingMusic creation usng generative deep learningPlasma controlEarth sensor processing for spacecraftMATLAB Bluetooth data acquisition applied to dance physics  What You Will LearnExplore deep learning using MATLAB and compare it to algorithmsWrite a deep learning function in MATLAB and train it with examplesUse MATLAB toolboxes related to deep learningImplement tokamak disruption predictionNow includes reinforcement learningWho This Book Is For Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB. N° de réf. du vendeur LU-9781484279113

Contacter le vendeur

Acheter neuf

EUR 50,91
Autre devise
Frais de port : EUR 3,41
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Eric Ham, Michael Paluszek, Stephanie Thomas
Edité par APress, US, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Paperback

Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. 2nd ed. Harness the power of MATLAB for deep-learning challenges. Practical MATLAB Deep Learning, Second Edition, remains a one-of a-kind book that provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. In this book, you'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. This edition includes new and expanded projects, and covers generative deep learning and reinforcement learning.Over the course of the book, you'll learn to model complex systems and apply deep learning to problems in those areas. Applications include:Aircraft navigationAn aircraft that lands on Titan, the moon of Saturn, using reinforcement learningStock market predictionNatural language processingMusic creation usng generative deep learningPlasma controlEarth sensor processing for spacecraftMATLAB Bluetooth data acquisition applied to dance physics  What You Will LearnExplore deep learning using MATLAB and compare it to algorithmsWrite a deep learning function in MATLAB and train it with examplesUse MATLAB toolboxes related to deep learningImplement tokamak disruption predictionNow includes reinforcement learningWho This Book Is For Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB. N° de réf. du vendeur LU-9781484279113

Contacter le vendeur

Acheter neuf

EUR 53,98
Autre devise
Frais de port : EUR 3,41
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Paluszek, Michael; Thomas, Stephanie; Ham, Eric
Edité par Apress, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Couverture souple

Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-30692

Contacter le vendeur

Acheter neuf

EUR 58,18
Autre devise
Frais de port : Gratuit
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Paluszek, Michael; Thomas, Stephanie; Ham, Eric
Edité par Apress, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43831393

Contacter le vendeur

Acheter D'occasion

EUR 41,41
Autre devise
Frais de port : EUR 17,02
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Eric Ham, Michael Paluszek, Stephanie Thomas
Edité par APress, US, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Paperback

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. 2nd ed. Harness the power of MATLAB for deep-learning challenges. Practical MATLAB Deep Learning, Second Edition, remains a one-of a-kind book that provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. In this book, you'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. This edition includes new and expanded projects, and covers generative deep learning and reinforcement learning.Over the course of the book, you'll learn to model complex systems and apply deep learning to problems in those areas. Applications include:Aircraft navigationAn aircraft that lands on Titan, the moon of Saturn, using reinforcement learningStock market predictionNatural language processingMusic creation usng generative deep learningPlasma controlEarth sensor processing for spacecraftMATLAB Bluetooth data acquisition applied to dance physics  What You Will LearnExplore deep learning using MATLAB and compare it to algorithmsWrite a deep learning function in MATLAB and train it with examplesUse MATLAB toolboxes related to deep learningImplement tokamak disruption predictionNow includes reinforcement learningWho This Book Is For Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB. N° de réf. du vendeur LU-9781484279113

Contacter le vendeur

Acheter neuf

EUR 56,87
Autre devise
Frais de port : EUR 2,29
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Paluszek, Michael; Thomas, Stephanie; Ham, Eric
Edité par Apress, 2022
ISBN 10 : 1484279115 ISBN 13 : 9781484279113
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26395236373

Contacter le vendeur

Acheter neuf

EUR 51,67
Autre devise
Frais de port : EUR 7,66
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 13 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre