Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you'll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods.
Finally, you'll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Scott Burger is a senior data scientist living and working in Seattle. His programming experience comes from the realm of astrophysics, but he uses it in many different types of scenarios ranging from business intelligence to database optimizations. Scott has built a solid career on explaining terse scientific concepts to the general public and wants to use that expertise to shed light on the world of machine learning for the general R user.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : New Legacy Books, Annandale, NJ, Etats-Unis
paperback. Etat : Very Good. Fast shipping and order satisfaction guaranteed. A portion of your purchase benefits Non-Profit Organizations, First Aid and Fire Stations! N° de réf. du vendeur mon0000007874
Quantité disponible : 1 disponible(s)
Vendeur : World of Books (was SecondSale), Montgomery, IL, Etats-Unis
Etat : Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00086103671
Quantité disponible : 2 disponible(s)
Vendeur : GoldBooks, Denver, CO, Etats-Unis
Etat : new. N° de réf. du vendeur 38L58_80_1491976446
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 30015428
Quantité disponible : 4 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WO-9781491976449
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 30015428-n
Quantité disponible : 4 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you'll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you'll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R's caret package" Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781491976449
Quantité disponible : 1 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Introduction to Machine Learning with R: Rigorous Mathematical Analysis. Book. N° de réf. du vendeur BBS-9781491976449
Quantité disponible : 5 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you'll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you'll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R's caret package. N° de réf. du vendeur LU-9781491976449
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2716030177576
Quantité disponible : Plus de 20 disponibles