Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.
Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.
You'll get the guidance you need to confidently:
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Aileen has worked in corporate law, physics research labs, and, most recently, a variety of NYC tech startups. Her interests range from defensive software engineering to UX designs for reducing cognitive load to the interplay between law and technology. Aileen is currently working at an early-stage NYC startup that has something to do with time series data and neural networks. She also serves as chair of the New York City Bar Association's Science and Law committee, which focuses on how the latest developments in science and computing should be regulated and how such developments should inform existing legal practices.
In the recent past, Aileen worked at mobile health platform One Drop and on Hillary Clinton's presidential campaign. She is a frequent speaker at machine learning conferences on both technical and sociological subjects. She holds an A.B. from Princeton University and is A.B.D. in Applied Physics at Columbia University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,38 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 0,16 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : As New. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1492041653-10-1
Quantité disponible : 1 disponible(s)
Vendeur : WeBuyBooks, Rossendale, LANCS, Royaume-Uni
Etat : Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. N° de réf. du vendeur wbs1515264419
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books, Mishawaka, IN, Etats-Unis
Etat : Good. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 51490436-6
Quantité disponible : 1 disponible(s)
Vendeur : Studibuch, Stuttgart, Allemagne
paperback. Etat : Gut. 497 Seiten; 9781492041658.3 Gewicht in Gramm: 1. N° de réf. du vendeur 936711
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WO-9781492041658
Quantité disponible : 7 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WO-9781492041658
Quantité disponible : 1 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Practical Time Series Analysis: Prediction with Statistics and Machine Learning 1.7. Book. N° de réf. du vendeur BBS-9781492041658
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 34645110-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.You'll get the guidance you need to confidently:Find and wrangle time series dataUndertake exploratory time series data analysisStore temporal dataSimulate time series dataGenerate and select features for a time seriesMeasure errorForecast and classify time series with machine or deep learningEvaluate accuracy and performance. N° de réf. du vendeur LU-9781492041658
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781492041658
Quantité disponible : Plus de 20 disponibles