Generalized Linear Models: A Unified Approach provides an introduction to and overview of GLMs, with each chapter carefully laying the groundwork for the next. Authors Jeff Gill and Michelle Torres provide examples using real data from multiple fields in the social sciences such as psychology, education, economics, and political science, including data on voting intentions in the 2016 U.S. Republican presidential primaries. The Second Edition also strengthens material on the exponential family form, including a new discussion on the multinomial distribution; adds more information on how to interpret results and make inferences in the chapter on estimation procedures; and has a new section on extensions to generalized linear models.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Jeff Gill is a Distinguished Professor of Government, a Professor of Statistics, and a Member of the Center for Behavioral Neuroscience at American University. His research applies Bayesian modeling and data analysis (decision theory, testing, model selection, elicited priors) to questions in general social science quantitative methodology, political behavior and institutions, medical/health data analysis especially physiology, circulation/blood, pediatric traumatic brain injury, and epidemiological measurement/data issues, using computationally intensive tools (Monte Carlo methods, MCMC, stochastic optimization, nonparametrics).
Michelle Torres is Assistant professor in the Department of Political Science at Rice University. She holds a PhD in Political Science and a AM in Statistics from Washington University in St. Louis. Her research interests are in the fields of political methodology, with a special focus on survey methodology, computer vision, causal inference, public opinion, and political communication.
Explaining the theoretical underpinning of generalized linear models, this text enables researchers to decide how to select the best way to adapt their data for this type of analysis, with examples to illustrate the application of GLM.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 89,45 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 7,67 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 176. N° de réf. du vendeur 26384563730
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 176. N° de réf. du vendeur 379340237
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 176. N° de réf. du vendeur 18384563736
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 2nd edition. 157 pages. 8.50x5.25x0.55 inches. In Stock. N° de réf. du vendeur __1506387349
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Explaining the theoretical underpinning of generalized linear models, this text enables researchers to decide how to select the best way to adapt their data for this type of analysis, with examples to illustrate the application of GLM.Über den . N° de réf. du vendeur 264512718
Quantité disponible : Plus de 20 disponibles
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_437089532
Quantité disponible : 1 disponible(s)