Articles liés à Jordan Canonical Form: Theory and Practice

Jordan Canonical Form: Theory and Practice - Couverture souple

 
9781608452507: Jordan Canonical Form: Theory and Practice

Synopsis

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V - > V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V - > V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurMorgan & Claypool Publishers
  • Date d'édition2009
  • ISBN 10 1608452506
  • ISBN 13 9781608452507
  • ReliureBroché
  • Langueanglais
  • Nombre de pages108
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Très bon
Weintraub Steven H. Jordan Canonical...
Afficher cet article

EUR 19 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783031035265: Jordan Canonical Form: Theory and Practice

Edition présentée

ISBN 10 :  3031035267 ISBN 13 :  9783031035265
Editeur : Springer, 2009
Couverture souple

Résultats de recherche pour Jordan Canonical Form: Theory and Practice

Image d'archives

Weintraub Steven H.
Edité par Morgan & Claypool, 2009
ISBN 10 : 1608452506 ISBN 13 : 9781608452507
Ancien ou d'occasion Softcover

Vendeur : Antiquariat Bücherkiste, Wuppertal, Allemagne

Évaluation du vendeur 3 sur 5 étoiles Evaluation 3 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Etat : Sehr gut. Weintraub Steven H. Jordan Canonical Form Theory and Practice - Synthesis Lectures on Mathematics and Statistics SC - 19 x 23 cm - Verlag: Morgan & Claypool - 2009 - ISBN: 9781608452507 - 96 Seiten - Englisch Klappentext: Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development ofJCE After beginning With background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over thefield ofcomplex numbers C, and let T: V --> 5 V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: LetA be a square matrix with complex entries. Then A is similar to a matrixJ in Jordan Canonical Form, i.e., there is an invertible matrix P a matrixJ in Jordan Canonical Form withA pp-l. We further present an algorithm to find P andJ, assuming that one can factor the characteristic polynomial ofA. In developing this algorithm we introduce the eigenstructure Picture (ESP) of a matrix, a pictorial representation that makes JCF Clear. The ESP of A determines J, and a refinement, the labelled eigenstructure Picture VESP) ofA, determines P as well. We illustrate this algorithm With copious examples, and provide numerous exercises for the reader. Zustand: SEHR GUT! Einband mit gnaz leichten Gebrauchsspuren, innen sehr sauber. Size: 19 x 23 Cm. Buch. N° de réf. du vendeur 035566

Contacter le vendeur

Acheter D'occasion

EUR 15
Autre devise
Frais de port : EUR 19
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Weintraub, Steven
Edité par Morgan & Claypool Publishers, 2009
ISBN 10 : 1608452506 ISBN 13 : 9781608452507
Ancien ou d'occasion paperback

Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week! N° de réf. du vendeur 3TWOWA001MQZ

Contacter le vendeur

Acheter D'occasion

EUR 39,74
Autre devise
Frais de port : EUR 64,59
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier