Articles liés à Validity, Reliability, and Significance: Empirical...

Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science - Couverture souple

 
9781636392714: Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science

Synopsis

Empirical methods are means to answering methodological questions of empirical sciences by statistical techniques. The methodological questions addressed in this book include the problems of validity, reliability, and significance. In the case of machine learning, these correspond to the questions of whether a model predicts what it purports to predict, whether a model's performance is consistent across replications, and whether a performance difference between two models is due to chance, respectively. The goal of this book is to answer these questions by concrete statistical tests that can be applied to assess validity, reliability, and significance of data annotation and machine learning prediction in the fields of NLP and data science.

Our focus is on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows detecting circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Last, a significance test based on the likelihood ratio of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data.

This book can be used as an introduction to empirical methods for machine learning in general, with a special focus on applications in NLP and data science. The book is self-contained, with an appendix on the mathematical background on GAMs and LMEMs, and with an accompanying webpage including R code to replicate experiments presented in the book.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurMorgan & Claypool Publishers
  • Date d'édition2021
  • ISBN 10 1636392717
  • ISBN 13 9781636392714
  • ReliureBroché
  • Langueanglais
  • Nombre de pages165
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Assez bon
Fast Shipping - Safe and Secure...
Afficher cet article
EUR 15,08

Autre devise

EUR 65,35 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781636392738: Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science

Edition présentée

ISBN 10 :  1636392733 ISBN 13 :  9781636392738
Editeur : Morgan & Claypool Publishers, 2021
Couverture rigide

Résultats de recherche pour Validity, Reliability, and Significance: Empirical...

Image d'archives

Riezler, Stefan,Hagmann, Michael
Edité par Morgan & Claypool
ISBN 10 : 1636392717 ISBN 13 : 9781636392714
Ancien ou d'occasion paperback

Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week! N° de réf. du vendeur 3TWOWA001LRV

Contacter le vendeur

Acheter D'occasion

EUR 15,08
Autre devise
Frais de port : EUR 65,35
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 8 disponible(s)

Ajouter au panier