Articles liés à The Art of Machine Learning: A Hands-On Guide to Machine...

The Art of Machine Learning: A Hands-On Guide to Machine Learning with R - Couverture souple

 
9781718502109: The Art of Machine Learning: A Hands-On Guide to Machine Learning with R

Synopsis

Learn to expertly apply a range of machine learning methods to real data with this practical guide.

Packed with real datasets and practical examples, The Art of Machine Learning will help you develop an intuitive understanding of how and why ML methods work, without the need for advanced math.

As you work through the book, you’ll learn how to implement a range of powerful ML techniques, starting with the k-Nearest Neighbors (k-NN) method and random forests, and moving on to gradient boosting, support vector machines (SVMs), neural networks, and more.

With the aid of real datasets, you’ll delve into regression models through the use of a bike-sharing dataset, explore decision trees by leveraging New York City taxi data, and dissect parametric methods with baseball player stats. You’ll also find expert tips for avoiding common problems, like handling “dirty” or unbalanced data, and how to troubleshoot pitfalls.

You’ll also explore:

  • How to deal with large datasets and techniques for dimension reduction
  • Details on how the Bias-Variance Trade-off plays out in specific ML methods
  • Models based on linear relationships, including ridge and LASSO regression
  • Real-world image and text classification and how to handle time series data

Machine learning is an art that requires careful tuning and tweaking. With The Art of Machine Learning as your guide, you’ll master the underlying principles of ML that will empower you to effectively use these models, rather than simply provide a few stock actions with limited practical use.

Requirements: A basic understanding of graphs and charts and familiarity with the R programming language

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Norman Matloff is an award-winning professor at the University of California, Davis. Matloff has a PhD in mathematics from UCLA and is the author of The Art of Debugging with GDB, DDD, and Eclipse and The Art of R Programming (both from No Starch Press).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Satisfaisant
Used book that is in clean, average...
Afficher cet article
EUR 22,63

Autre devise

EUR 9,52 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 35,46

Autre devise

EUR 0,73 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour The Art of Machine Learning: A Hands-On Guide to Machine...

Image d'archives

Matloff, Norman
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Ancien ou d'occasion Couverture souple

Vendeur : Better World Books: West, Reno, NV, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Good. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 50097211-75

Contacter le vendeur

Acheter D'occasion

EUR 22,63
Autre devise
Frais de port : EUR 9,52
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Norman Matloff
Edité par No Starch Press,US, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf PAP

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur DB-9781718502109

Contacter le vendeur

Acheter neuf

EUR 35,46
Autre devise
Frais de port : EUR 0,73
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Norman Matloff
Edité par No Starch Press,US, US, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Paperback

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Computing. Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets. N° de réf. du vendeur LU-9781718502109

Contacter le vendeur

Acheter neuf

EUR 39,41
Autre devise
Frais de port : EUR 2,29
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Norman Matloff
Edité par No Starch Press,US, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Paperback / softback

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 209. N° de réf. du vendeur B9781718502109

Contacter le vendeur

Acheter neuf

EUR 37,40
Autre devise
Frais de port : EUR 4,86
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Norman Matloff
Edité par No Starch Press,US, US, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Paperback

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Computing. Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets. N° de réf. du vendeur LU-9781718502109

Contacter le vendeur

Acheter neuf

EUR 39,88
Autre devise
Frais de port : EUR 3,40
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Matloff, Norman
Edité par No Starch Press, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26389920746

Contacter le vendeur

Acheter neuf

EUR 36,98
Autre devise
Frais de port : EUR 7,66
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Norman Matloff
Edité par No Starch Press,US, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf PAP

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur DB-9781718502109

Contacter le vendeur

Acheter neuf

EUR 39,53
Autre devise
Frais de port : EUR 5,52
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Norman Matloff
Edité par No Starch Press, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Norman Matloff is an award-winning professor at the University of California, Davis. Matloff has a PhD in mathematics from UCLA and is the author of The Art of Debugging with GDB, DDD, and Eclipse and The Art of R Programming (both from. N° de réf. du vendeur 497929646

Contacter le vendeur

Acheter neuf

EUR 36
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Matloff, Norman
Edité par No Starch Press, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Couverture souple

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2024. paperback. . . . . . N° de réf. du vendeur V9781718502109

Contacter le vendeur

Acheter neuf

EUR 42,91
Autre devise
Frais de port : EUR 3
De Irlande vers France
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Norman Matloff
Edité par No Starch Press,US, US, 2024
ISBN 10 : 1718502109 ISBN 13 : 9781718502109
Neuf Paperback

Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Computing. Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets. N° de réf. du vendeur LU-9781718502109

Contacter le vendeur

Acheter neuf

EUR 42,57
Autre devise
Frais de port : EUR 3,40
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 22 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre