Articles liés à Programming With Python: 4 Manuscripts - Deep Learning...

Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow - Couverture souple

 
9781719443715: Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow

Synopsis

Programming With Python - 4 BOOK BUNDLE!!

Deep Learning with Keras

Here Is a Preview of What You’ll Learn Here…

  • The difference between deep learning and machine learning
  • Deep neural networks
  • Convolutional neural networks
  • Building deep learning models with Keras
  • Multi-layer perceptron network models
  • Activation functions
  • Handwritten recognition using MNIST
  • Solving multi-class classification problems
  • Recurrent neural networks and sequence classification
  • And much more...

Convolutional Neural Networks in Python

Here Is a Preview of What You’ll Learn In This Book…

  • Convolutional neural networks structure
  • How convolutional neural networks actually work
  • Convolutional neural networks applications
  • The importance of convolution operator
  • Different convolutional neural networks layers and their importance
  • Arrangement of spatial parameters
  • How and when to use stride and zero-padding
  • Method of parameter sharing
  • Matrix multiplication and its importance
  • Pooling and dense layers
  • Introducing non-linearity relu activation function
  • How to train your convolutional neural network models using backpropagation
  • How and why to apply dropout
  • CNN model training process
  • How to build a convolutional neural network
  • Generating predictions and calculating loss functions
  • How to train and evaluate your MNIST classifier
  • How to build a simple image classification CNN
  • And much, much more!

Python Machine Learning

Here Is A Preview Of What You’ll Learn Here…

  • Basics behind machine learning techniques
  • Different machine learning algorithms
  • Fundamental machine learning applications and their importance
  • Getting started with machine learning in Python, installing and starting SciPy
  • Loading data and importing different libraries
  • Data summarization and data visualization
  • Evaluation of machine learning models and making predictions
  • Most commonly used machine learning algorithms, linear and logistic regression, decision trees support vector machines, k-nearest neighbors, random forests
  • Solving multi-clasisfication problems
  • Data visualization with Matplotlib and data transformation with Pandas and Scikit-learn
  • Solving multi-label classification problems
  • And much, much more...

Machine Learning With TensorFlow

Here Is a Preview of What You’ll Learn Here…

  • What is machine learning
  • Main uses and benefits of machine learning
  • How to get started with TensorFlow, installing and loading data
  • Data flow graphs and basic TensorFlow expressions
  • How to define your data flow graphs and how to use TensorBoard for data visualization
  • Main TensorFlow operations and building tensors
  • How to perform data transformation using different techniques
  • How to build high performance data pipelines using TensorFlow Dataset framework
  • How to create TensorFlow iterators
  • Creating MNIST classifiers with one-hot transformation

Get this book bundle NOW and SAVE money!

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

!! Special 2-In-1 Deal - Buy The Paperback Version And Get The Ebook For FREE !!

Programming With Python - 4 BOOK BUNDLE!!

Deep Learning with Keras

Here Is a Preview of What You’ll Learn Here...

  • The difference between deep learning and machine learning
  • Deep neural networks
  • Convolutional neural networks
  • Building deep learning models with Keras
  • Multi-layer perceptron network models
  • Activation functions
  • Handwritten recognition using MNIST
  • Solving multi-class classification problems
  • Recurrent neural networks and sequence classification
  • And much more...

Convolutional Neural Networks in Python

Here Is a Preview of What You’ll Learn In This Book...

  • Convolutional neural networks structure
  • How convolutional neural networks actually work
  • Convolutional neural networks applications
  • The importance of convolution operator
  • Different convolutional neural networks layers and their importance
  • Arrangement of spatial parameters
  • How and when to use stride and zero-padding
  • Method of parameter sharing
  • Matrix multiplication and its importance
  • Pooling and dense layers
  • Introducing non-linearity relu activation function
  • How to train your convolutional neural network models using backpropagation
  • How and why to apply dropout
  • CNN model training process
  • How to build a convolutional neural network
  • Generating predictions and calculating loss functions
  • How to train and evaluate your MNIST classifier
  • How to build a simple image classification CNN
  • And much, much more!

Python Machine Learning

Here Is A Preview Of What You’ll Learn Here...

  • Basics behind machine learning techniques
  • Different machine learning algorithms
  • Fundamental machine learning applications and their importance
  • Getting started with machine learning in Python, installing and starting SciPy
  • Loading data and importing different libraries
  • Data summarization and data visualization
  • Evaluation of machine learning models and making predictions
  • Most commonly used machine learning algorithms, linear and logistic regression, decision trees support vector machines, k-nearest neighbors, random forests
  • Solving multi-clasisfication problems
  • Data visualization with Matplotlib and data transformation with Pandas and Scikit-learn
  • Solving multi-label classification problems
  • And much, much more...

Machine Learning With TensorFlow

Here Is a Preview of What You’ll Learn Here...

  • What is machine learning
  • Main uses and benefits of machine learning
  • How to get started with TensorFlow, installing and loading data
  • Data flow graphs and basic TensorFlow expressions
  • How to define your data flow graphs and how to use TensorBoard for data visualization
  • Main TensorFlow operations and building tensors
  • How to perform data transformation using different techniques
  • How to build high performance data pipelines using TensorFlow Dataset framework
  • How to create TensorFlow iterators
  • Creating MNIST classifiers with one-hot transformation

Get this book bundle NOW and SAVE money!

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Moyen
Supports Goodwill of Silicon Valley...
Afficher cet article
EUR 17,60

Autre devise

EUR 70,32 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Programming With Python: 4 Manuscripts - Deep Learning...

Image fournie par le vendeur

Millstein, Frank
ISBN 10 : 1719443718 ISBN 13 : 9781719443715
Ancien ou d'occasion Couverture souple

Vendeur : Goodwill of Silicon Valley, SAN JOSE, CA, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : acceptable. Supports Goodwill of Silicon Valley job training programs. The cover and pages are in Acceptable condition! Any other included accessories are also in Acceptable condition showing use. Use can include some highlighting and writing, page and cover creases as well as other types visible wear such as cover tears discoloration, staining, marks, scuffs, etc. All pages intact. N° de réf. du vendeur GWSVV.1719443718.A

Contacter le vendeur

Acheter D'occasion

EUR 17,60
Autre devise
Frais de port : EUR 70,32
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier