Renewable energy is crucial to preserve the environment. This energy involves various systems that must be optimized and assessed to provide better performance; however, the design and development of renewable energy systems remains a challenge. It is crucial to implement the latest innovative research in the field in order to develop and improve renewable energy systems. Applications of Nature-Inspired Computing in Renewable Energy Systems discusses the latest research on nature-inspired computing approaches applied to the design and development of renewable energy systems and provides new solutions to the renewable energy domain. Covering topics such as microgrids, wind power, and artificial neural networks, it is ideal for engineers, industry professionals, researchers, academicians, practitioners, teachers, and students.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Mohamed Arezki Mellal is a Professor in the Department of Mechanical Engineering, Faculty of Technology, at M’Hamed Bougara University, Boumerdes, Algeria. He was ranked among the Top 2% of Scientists Worldwide by Stanford University (Single-year 2022) and was the top-ranked candidate in the 47th National University Commission for the Professorship in Mechanical Engineering in 2022. He has been a Visiting Scholar at various universities and has published over 80 research papers. He has been invited to various conferences and serves as a regular reviewer for over 30 SCIE journals.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,68 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781799885610_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9781799885610
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9781799885610
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The design and development of renewable energy systems remain a challenge. This book focuses on nature-inspired computing approaches which offer the most prevailing solutions. As such, it provides new solutions to the renewable energy domain.Klappen. N° de réf. du vendeur 538359757
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2912160209421
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Renewable energy is crucial to preserve the environment. This energy involves various systems that must be optimized and assessed to provide better performance; however, the design and development of renewable energy systems remains a challenge. It is crucial to implement the latest innovative research in the field in order to develop and improve renewable energy systems. Applications of Nature-Inspired Computing in Renewable Energy Systems discusses the latest research on nature-inspired computing approaches applied to the design and development of renewable energy systems and provides new solutions to the renewable energy domain. Covering topics such as microgrids, wind power, and artificial neural networks, it is ideal for engineers, industry professionals, researchers, academicians, practitioners, teachers, and students. N° de réf. du vendeur 9781799885610
Quantité disponible : 1 disponible(s)