Mathématiques L3 : Analyse - Cours complet avec 600 tests et exercices corrigés

Note moyenne 5
( 1 avis fournis par GoodReads )
 
9782744073502: Mathématiques L3 : Analyse - Cours complet avec 600 tests et exercices corrigés

Mathématiques L3 - Analyse est, avec les deux autres volumes de la collection (Algèbre et Mathématiques appliquées), le dernier volet d'une série couvrant les besoins des étudiants préparant la licence, le Capes ainsi que l'agrégation de mathématiques. Il regroupe tout ce qui est nécessaire en L3: un cours complet et détaillé et 600 tests et exercices entièrement corrigés. Il renferme également beaucoup d'éléments utiles en vue de la préparation du master. Particulièrement didactique, Mathématiques L3 s'applique à faire ressortir les raisons d'être et le sens de toutes les notions introduites. La présentation des outils fondamentaux est ainsi toujours assortie d'un grand nombre d'exemples concrets et les concepts analytiques sont reliés aux questions qui les ont fait naître. Quelques éléments d'histoire des mathématiques sont présentés pour illustrer l'ensemble des idées. Tous les outils sont réunis pour faciliter la compréhension des concepts: ~ de nombreux exemples illustrent le cours; grâce à ses encadrés « Rappel », « Attention », « Méthode » et « Synthèse », Mathématiques L3 rappelle les notions fondamentales, souligne les pièges à éviter, récapitule la marche à suivre pour résoudre les problèmes et synthétise les sujets complexes; ~ posées au fil du texte, des questions tests incitent à une lecture active et indiquent au lecteur s'il peut poursuivre son étude ou s'il doit préalablement consolider ses connaissances; ~ enfin, Mathématiques L3 propose un entraînement sérieux en offrant un grand nombre d'exercices d'applications tous intégralement corrigés. Cours: mathématiques, analyse (topologie, mesure et intégration, opérateurs, fonction d une variable complexe, analyse de Fourier, calcul différentiel, équations différentielles), préparation au Capes et à l agrégation.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Biographie de l'auteur :

Jean-Pierre Marco est à l'origine de cette série d'ouvrages qui couvrira in fine l'ensemble des besoins des étudiants en licence de mathématiques. Coordinateur du volume Mathématiques L 1, puis, avec P. Thieullen et J.A. Weil, du Mathématiques L2, il coordonne aujourd'hui le tome Analyse du niveau L3. Il est maître de conférences et responsable de la préparation à l'agrégation de mathématiques à l'université Paris VI. Par ailleurs, il enseigne les systèmes dynamiques en M2 à l'Observatoire de Paris et à l'Ecole nationale supérieure des techniques avancées. Il est aussi l'auteur d'Analyse pour la licence (Dunod, 2002). Hakim Boumaza est agrégé et docteur en mathématiques de l'université Paris VII où il enseigne l'analyse spectrale et la théorie des opérateurs en M2 et l'étude qualitative des équations différentielles en L2. Ses recherches portent sur l'étude des propriétés dynamiques et spectrales d'opérateurs de Schrôdinger aléatoires continus et à valeurs matricielles. Benjamin Collas est thésard à l'Institut de mathématiques de Jussieu. Il a enseigné le calcul formel basé sur le programme général de mathématiques L1 et les TD de topologie générale et calcul différentiel en L3. Son sujet d'étude se situe au carrefour de la théorie des nombres et de la géométrie algébrique. Stéphane Collion est commandant de bord à Air France, agrégé et docteur en mathématiques. En parallèle, il poursuit ses recherches dans le domaine de l'analyse complexe à plusieurs variables et l'analyse non-linéaire sur les variétés riemanniennes. Marie Dellinger est docteur et agrégée en mathématiques. Son domaine de recherche est la géométrie différentielle et l'analyse des variétés riemanniennes. Elle a dispensé des TD de topologie, calcul différentiel et géométrie différentielle en L3 et enseigne en classes préparatoires à Montargis. Zoé Faget est docteur en mathématiques de l'université Paris VI. Après avoir travaillé sur l'analyse non linéaire sur les variétés différentielles, elle étudie les théories relativistes d'Einstein et fait partie de plusieurs groupes de recherche informatique et musicale. Laurent Lazzarini est maître de conférences à l'université Paris VI où il donne des cours et des TD d'analyse et participe à la préparation au Capes et à l'agrégation. Il enseigne également à l'Ecole Polytechnique universitaire de Paris VI. Ses domaines de recherche sont la géométrie symplectique et l'analyse sur les variétés. Il a coordonné avec J.P. Marco le premier tome de la série, Mathématiques L.1. Florent Schaffhauser est docteur en mathématiques de l'université paris VI et chercheur invité à l'université Keio (Japon). Agrégé de mathématiques, il a enseigné en L1 et L2 à Paris VI et a été chargé de cours à l'EESEC. Ses recherches portent sur les actions de groupe en géométrie symplectique et les espaces de modules de fibrés vectoriels.

Extrait :

Avant-propos de Jean-Pierre Marco, Aviva Szpirglas, Jacques-Arthur Weil et Alain Yger

Les trois volumes de la série Mathématiques L3 font suite aux ouvrages Mathématiques Ll et Mathématiques L2, dans la même collection. Nous avons adopté le découpage naturel du programme de L3, qui recouvre l'ensemble des sujets enseignés dans les universités françaises : un tome pour l'algèbre, un tome pour l'analyse, un tome pour les mathématiques appliquées. Les cinq ouvrages de la série L présentent donc ainsi l'intégralité des connaissances de la licence de mathématiques. Les trois tomes L3 anticipent de plus assez largement, lorsque cela était possible sans nuire au caractère didactique de l'approche, sur le programme de M1.

Nous avons conservé la ligne générale des ouvrages de L1 et L2 pour la présentation des idées : les notions indispensables forment le «noyau dur» du texte et sont développées en profondeur, tandis que des «compléments» enrichissent le cours pédagogique et aident à saisir la portée des outils mis en oeuvre et l'importance des idées introduites.

Cette série d'ouvrages L3 complète donc les deux tomes précédents pour donner à l'étudiant un panorama des méthodes de base, à la fois théoriques et plus appliquées, des mathématiques des trois premières années d'université. L'étude de ce panorama lui permettra notamment de déterminer l'orientation qu'il souhaite donner à son cursus, lequel peut tendre vers les mathématiques dites pures ou les mathématiques dites appliquées (bien que ces deux dénominations soient certainement impropres). Pour faciliter ce choix, nous nous sommes attachés dans ces tomes de L3 à différencier clairement ces deux tendances.

Un texte mathématique doit être lu de manière critique et active. Comme dans les deux premiers tomes, tout au long du texte, des questions test doivent permettre au lecteur de s'assurer de sa bonne compréhension des sujets abordés. Il est conseillé de les résoudre au fur et à mesure de la lecture ; elles sont corrigées à la fin de l'ouvrage. Des exercices, d'un niveau plus élevé, sont regroupés à la fin de chaque chapitre ; ils sont eux aussi intégralement corrigés à la fin des ouvrages.

Pour conclure cet avant-propos, nous espérons que ces ouvrages sauront apporter au lecteur, au-delà des bases théoriques et techniques nécessaires, la part de plaisir indispensable à la pratique courante de la discipline mathématique.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Meilleurs résultats de recherche sur AbeBooks

1.

MARCO JEAN-PIERRE
Edité par PEARSON
ISBN 10 : 2744073504 ISBN 13 : 9782744073502
Neuf(s) Couverture rigide Quantité : 3
Vendeur
Nomade Store Europe
(La Rochelle, France)
Evaluation vendeur
[?]

Description du livre PEARSON. Hardcover. État : NEW. PEARSON (01/07/2009) Weight: 1786g. / 3.94 lbs Binding Hardcover Great Customer Service!. N° de réf. du libraire 9782744073502

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 49,90
Autre devise

Ajouter au panier

Frais de port : EUR 10
De France vers Etats-Unis
Destinations, frais et délais

2.

Benjamin Collas; Florent Schaffhauser; Hakim Boumaza; Laurent Lazzarini; Marie Dellinger; Stéphane Collion; Zoé Faget
Edité par Pearson Education (2009)
ISBN 10 : 2744073504 ISBN 13 : 9782744073502
Neuf(s) Quantité : 3
Vendeur
Gallix
(Gif sur Yvette, France)
Evaluation vendeur
[?]

Description du livre Pearson Education, 2009. État : Neuf. N° de réf. du libraire 9782744073502

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 49,90
Autre devise

Ajouter au panier

Frais de port : EUR 12
De France vers Etats-Unis
Destinations, frais et délais

3.

Benjamin Collas; Florent Schaffhauser; Hakim Boumaza; Laurent Lazzarini; Marie Dellinger; Stéphane Collion; Zoé Faget
ISBN 10 : 2744073504 ISBN 13 : 9782744073502
Neuf(s) Quantité : 20
Vendeur
BWB
(Valley Stream, NY, Etats-Unis)
Evaluation vendeur
[?]

Description du livre État : New. Depending on your location, this item may ship from the US or UK. N° de réf. du libraire 97827440735020000000

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 68,50
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

4.

Benjamin Collas
Edité par Pearson Education
ISBN 10 : 2744073504 ISBN 13 : 9782744073502
Neuf(s) Paperback Quantité : 1
Vendeur
Irish Booksellers
(Rumford, ME, Etats-Unis)
Evaluation vendeur
[?]

Description du livre Pearson Education. Paperback. État : New. book. N° de réf. du libraire 2744073504

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 118,86
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais