This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.
The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models.
The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.
This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Jiming Jiang is Professor of Statistics and a former Director of Statistical Laboratory at the University of California, Davis. He is a prominent researcher in the fields of mixed effects models, small area estimation, model selection, and statistical genetics. He is the author of Linear and Generalized Linear Mixed Models and Their Applications, 2nd Edition (Springer 2021), Robust Mixed Model Analysis (2019), Asymptotic Analysis of Mixed Effects Models: Theory, Applications, and Open Problems (2017), and The Fence Methods (with T. Ngyuen, 2016). Jiming Jiang has been editorial board member of The Annals of Statistics and Journal of the American Statistical Association, among others. He is a Fellow of the American Association for the Advancement of Science, the American Statistical Association, and the Institute of Mathematical Statistics; an elected member of the International Statistical Institute; and a Yangtze River Scholar (Chaired Professor, 2017-2020).
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,60 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783030916978_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statisticsbegins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models.The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. 704 pp. Englisch. N° de réf. du vendeur 9783030916978
Quantité disponible : 2 disponible(s)
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. Second Edition 2022. This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. N° de réf. du vendeur LU-9783030916978
Quantité disponible : Plus de 20 disponibles
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-346772
Quantité disponible : 2 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. Second Edition 2022. This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. N° de réf. du vendeur LU-9783030916978
Quantité disponible : Plus de 20 disponibles
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-325381
Quantité disponible : 2 disponible(s)
Vendeur : ALLBOOKS1, Direk, SA, Australie
N° de réf. du vendeur SHUB346772
Quantité disponible : 1 disponible(s)
Vendeur : ALLBOOKS1, Direk, SA, Australie
N° de réf. du vendeur SHUB325381
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Focuses on analytical skills as well as applying formulaeProvides motivations and intuition so that readers can apply conceptsSecond Edition implements challenges of contemporary data scienceJiming Jiang is Professor of Stati. N° de réf. du vendeur 834045322
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 2nd ed. 2022 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26396290858
Quantité disponible : 1 disponible(s)