Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.
The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:
Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Tome Eftimov is currently a research fellow at the Jozef Stefan Institute, Ljubljana, Slovenia where he was awarded his PhD. He has since been a postdoctoral research fellow at the Dept. of Biomedical Data Science, and the Centre for Population Health Sciences, Stanford University, USA, and a research associate at the University of California, San Francisco, USA. His main areas of research include statistics, natural language processing, heuristic optimization, machine learning, and representational learning. His work related to benchmarking in computational intelligence is focused on developing more robust statistical approaches that can be used for the analysis of experimental data.
Peter Korosec received his PhD degree from the Jozef Stefan Postgraduate School, Ljubljana, Slovenia. Since 2002 he has been a researcher at the Computer Systems Department of the Jozef Stefan Institute, Ljubljana. He has participated in the organization of various conferencesworkshops as program chair or organizer. He has successfully applied his optimization approaches to several real-world problems in engineering. Recently, he has focused on better understanding optimization algorithms so that they can be more efficiently selected and applied to real-world problems.
The authors have presented the related tutorial at the significant related international conferences in Evolutionary Computing, including GECCO, PPSN, and SSCI.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Hervorragend. Zustand: Hervorragend | Seiten: 152 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 41826443/1
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. N° de réf. du vendeur 877455768
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783030969196_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Focusing oncomprehensive comparisonsof the performance of stochastic optimization algorithms, this book provides an overview of the current approachesused to analyzealgorithm performancein a range of commonscenarios, while also addressingissues that are often overlooked.In turn, itshows how these issues can be easily avoided by applyingtheprinciplesthat have producedDeep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examplesfroma recently developed web-service-based e-learning tool(DSCTool) arepresented. The toolprovides users with all the functionalities needed to makerobust statistical comparison analysesinvariousstatistical scenarios.The book isintendedfornewcomers to the field and experienced researchers alike. For newcomers, it coversthe basicsofoptimization and statistical analysis,familiarizing themwith thesubject matterbefore introducingthe Deep Statistical Comparison approach. Experienced researcherscan quickly move on to the content on newstatistical approaches.The book is dividedinto three parts:Part I: Introduction to optimization, benchmarking, and statistical analysis - Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms - Chapters 5-7.Part III: Implementation and applicationof DeepStatistical Comparison - Chapter 8. N° de réf. du vendeur 9783030969196
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Focusing oncomprehensive comparisonsof the performance of stochastic optimization algorithms, this book provides an overview of the current approachesused to analyzealgorithm performancein a range of commonscenarios, while also addressingissues that are often overlooked.In turn, itshows how these issues can be easily avoided by applyingtheprinciplesthat have producedDeep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examplesfroma recently developed web-service-based e-learning tool(DSCTool) arepresented. The toolprovides users with all the functionalities needed to makerobust statistical comparison analysesinvariousstatistical scenarios.The book isintendedfornewcomers to the field and experienced researchers alike. For newcomers, it coversthe basicsofoptimization and statistical analysis,familiarizing themwith thesubject matterbefore introducingthe Deep Statistical Comparison approach. Experienced researcherscan quickly move on to the content on newstatistical approaches.The book is dividedinto three parts:Part I: Introduction to optimization, benchmarking, and statistical analysis - Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms - Chapters 5-7.Part III: Implementation and applicationof DeepStatistical Comparison - Chapter 8. 152 pp. Englisch. N° de réf. du vendeur 9783030969196
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:Part I: Introduction to optimization, benchmarking, and statistical analysis ¿ Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms ¿ Chapters 5-7.Part III: Implementation and application of Deep Statistical Comparison ¿ Chapter 8.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. N° de réf. du vendeur 9783030969196
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26396414456
Quantité disponible : 4 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783030969196
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 399995431
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18396414450
Quantité disponible : 4 disponible(s)