Articles liés à Thinking Data Science: A Data Science Practitioner’s...

Thinking Data Science: A Data Science Practitioner’s Guide - Couverture souple

 
9783031023651: Thinking Data Science: A Data Science Practitioner’s Guide

Synopsis

This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single "Cheat Sheet".

The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Poornachandra Sarang, in his IT career spanning four decades, has been consulting large IT organizations on the design and architecture of systems using state-of-the-art technologies. He has authored several books covering a wide range of emerging technologies. Dr. Sarang is a Ph.D. advisor for Computer Science and Engineering and is on the thesis advisory committee for aspiring doctoral candidates. He has designed and delivered courses/curricula for universities at the postgraduate level, including courses and workshops on emerging technologies for industry. He is a known face at technical and research conferences delivering both keynote and technical talks.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 50,28

Autre devise

EUR 11 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783031023620: Thinking Data Science: A Data Science Practitioner’s Guide

Edition présentée

ISBN 10 :  3031023625 ISBN 13 :  9783031023620
Editeur : Springer International Publishin..., 2023
Couverture rigide

Résultats de recherche pour Thinking Data Science: A Data Science Practitioner’s...

Image fournie par le vendeur

Poornachandra Sarang
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development Should I use GOFAI, ANN/DNN or Transfer Learning Can I rely on AutoML for model development What if the client provides me Gig and Terabytes of data for developing analytic models How do I handle high-frequency dynamic datasets This book provides the practitioner with a consolidation of the entire data science process in a single 'Cheat Sheet'.The challenge for a data scientistis to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designedto do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book.Thinking Data Sciencewill helppractising data scientists, academicians, researchers, and students who want to build ML models using theappropriate algorithms and architectures, whether the data be small or big. 380 pp. Englisch. N° de réf. du vendeur 9783031023651

Contacter le vendeur

Acheter neuf

EUR 50,28
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sarang, Poornachandra
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Kartoniert / Broschiert
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on . N° de réf. du vendeur 1384734579

Contacter le vendeur

Acheter neuf

EUR 55,78
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Poornachandra Sarang
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development Should I use GOFAI, ANN/DNN or Transfer Learning Can I rely on AutoML for model development What if the client provides me Gig and Terabytes of data for developing analytic models How do I handle high-frequency dynamic datasets This book provides the practitioner with a consolidation of the entire data science process in a single 'Cheat Sheet'.The challenge for a data scientistis to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designedto do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book.Thinking Data Sciencewill helppractising data scientists, academicians, researchers, and students who want to build ML models using theappropriate algorithms and architectures, whether the data be small or big. N° de réf. du vendeur 9783031023651

Contacter le vendeur

Acheter neuf

EUR 64,19
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Poornachandra Sarang
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development Should I use GOFAI, ANN/DNN or Transfer Learning Can I rely on AutoML for model development What if the client provides me Gig and Terabytes of data for developing analytic models How do I handle high-frequency dynamic datasets This book provides the practitioner with a consolidation of the entire data science process in a single ¿Cheat Sheet¿.The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 380 pp. Englisch. N° de réf. du vendeur 9783031023651

Contacter le vendeur

Acheter neuf

EUR 64,19
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Sarang, Poornachandra
Edité par Springer, 2024
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2023rd edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26398913317

Contacter le vendeur

Acheter neuf

EUR 82,21
Autre devise
Frais de port : EUR 7,71
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Sarang, Poornachandra
Edité par Springer, 2024
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18398913327

Contacter le vendeur

Acheter neuf

EUR 87,68
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Sarang, Poornachandra
Edité par Springer, 2024
ISBN 10 : 303102365X ISBN 13 : 9783031023651
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 397496570

Contacter le vendeur

Acheter neuf

EUR 85,48
Autre devise
Frais de port : EUR 10,19
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier