Articles liés à Mathematical Foundations of Data Science

Mathematical Foundations of Data Science - Couverture rigide

 
9783031190735: Mathematical Foundations of Data Science

Synopsis

This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.

Topics and features:

  • Focuses on approaches supported by mathematical arguments, rather than sole computing experiences
  • Investigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from them
  • Considers key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithms
  • Examines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problem
  • Addresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrization
  • Investigates the mathematical principles involves with natural language processing and computer vision
  • Keeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire book

    Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations "beyond" the sole computing experience.

    Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

    À propos de l?auteur

    Tomas Hrycej is a pioneer in the field of artificial intelligence and neural networks, having worked in this field since the 1980s. As an example of his pioneering deeds, he worked in the 1990s at Daimler Research on self-driving cars. In his doctoral thesis, he dealt with modular learning concepts in neural networks. His most important research stations were Daimler AG, Bosch GmbH, the University of Passau and currently the University of St. Gallen. He is the author of three monographs: Neurocontrol - Towards an Industrial Control Methodology, Modular Learning in Neural Networks (both Wiley-Interscience) and Robust Control ("Robuste Regelung", Springer), as well as about 60 publications in journals and conference proceedings.

    Bernhard Bermeitinger is a research assistant at the Chair of Data Science and Natural Language Processing and is currently working on his PhD in Deep Learning.
      Matthias Cetto is a visiting researcher at the Chair of Data Science and Natural Language Processing and conducts research in the field of Natural Language Processing.
      Siegfried Handschuh is a Full professor of Data Science and Natural Language Processing at the Institute of Computer Science at the University of St. Gallen, Switzerland. He received his PhD from the University of Karlsruhe (now: Karlsruhe Institute of Technology), Germany. His PhD thesis was in Collaboration with Stanford University as part of the American DARPA DAML project. Siegfried spend eight year in Ireland, where he led the Knowledge Discovery Unit at the Insight Centre for Data Analytics in Galway. He worked with multinational companies such as HP, SAP, IBM, Motorola and Elsevier Publishing. He also conducted research on the Digital Aristotle initiative, a project by Microsoft co-funder Paul Allen. He has published over 300 scientific papers and is highly citedwith an h-index of 41 (according to Google Scholar). This makes him one of the top-ranked Computer Scientists in Switzerland.

      Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

      • ÉditeurSpringer International Publishing AG
      • Date d'édition2023
      • ISBN 10 3031190734
      • ISBN 13 9783031190735
      • ReliureRelié
      • Langueanglais
      • Nombre de pages213
      • Coordonnées du fabricantnon disponible

      Acheter neuf

      Afficher cet article
      EUR 72,08

      Autre devise

      EUR 2,90 expédition depuis Etats-Unis vers France

      Destinations, frais et délais

      Autres éditions populaires du même titre

      9783031190766: Mathematical Foundations of Data Science

      Edition présentée

      ISBN 10 :  3031190769 ISBN 13 :  9783031190766
      Editeur : Springer, 2024
      Couverture souple

      Résultats de recherche pour Mathematical Foundations of Data Science

      Image d'archives

      Hrycej
      Edité par Springer, 2023
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : Basi6 International, Irving, TX, Etats-Unis

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-261209

      Contacter le vendeur

      Acheter neuf

      EUR 72,08
      Autre devise
      Frais de port : EUR 2,90
      De Etats-Unis vers France
      Destinations, frais et délais

      Quantité disponible : 2 disponible(s)

      Ajouter au panier

      Image d'archives

      0
      Edité par Springer, 2023
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : Basi6 International, Irving, TX, Etats-Unis

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-14009

      Contacter le vendeur

      Acheter neuf

      EUR 74,29
      Autre devise
      Frais de port : EUR 2,90
      De Etats-Unis vers France
      Destinations, frais et délais

      Quantité disponible : 1 disponible(s)

      Ajouter au panier

      Image d'archives

      Tomas Hrycej
      Edité par Springer, 2023
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : Books Puddle, New York, NY, Etats-Unis

      Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

      Etat : New. 1st Edition. N° de réf. du vendeur 26396295637

      Contacter le vendeur

      Acheter neuf

      EUR 72
      Autre devise
      Frais de port : EUR 7,79
      De Etats-Unis vers France
      Destinations, frais et délais

      Quantité disponible : 1 disponible(s)

      Ajouter au panier

      Image d'archives

      Hrycej Tomas
      Edité par Springer, 2023
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : Majestic Books, Hounslow, Royaume-Uni

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Etat : New. N° de réf. du vendeur 401162762

      Contacter le vendeur

      Acheter neuf

      EUR 71,73
      Autre devise
      Frais de port : EUR 10,39
      De Royaume-Uni vers France
      Destinations, frais et délais

      Quantité disponible : 1 disponible(s)

      Ajouter au panier

      Image d'archives

      Hrycej Tomas
      Edité par Springer, 2023
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Etat : New. N° de réf. du vendeur 18396295647

      Contacter le vendeur

      Acheter neuf

      EUR 75,65
      Autre devise
      Frais de port : EUR 7,95
      De Allemagne vers France
      Destinations, frais et délais

      Quantité disponible : 1 disponible(s)

      Ajouter au panier

      Image fournie par le vendeur

      Hrycej, Tomas|Bermeitinger, Bernhard|Cetto, Matthias|Handschuh, Siegfried
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : moluna, Greven, Allemagne

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Gebunden. Etat : New. N° de réf. du vendeur 706732223

      Contacter le vendeur

      Acheter neuf

      EUR 77,17
      Autre devise
      Frais de port : EUR 9,70
      De Allemagne vers France
      Destinations, frais et délais

      Quantité disponible : Plus de 20 disponibles

      Ajouter au panier

      Image fournie par le vendeur

      Tomas Hrycej
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. N° de réf. du vendeur 9783031190735

      Contacter le vendeur

      Acheter neuf

      EUR 90,94
      Autre devise
      Frais de port : EUR 10,99
      De Allemagne vers France
      Destinations, frais et délais

      Quantité disponible : 1 disponible(s)

      Ajouter au panier

      Image fournie par le vendeur

      Tomas Hrycej
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide
      impression à la demande

      Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. 228 pp. Englisch. N° de réf. du vendeur 9783031190735

      Contacter le vendeur

      Acheter neuf

      EUR 90,94
      Autre devise
      Frais de port : EUR 11
      De Allemagne vers France
      Destinations, frais et délais

      Quantité disponible : 2 disponible(s)

      Ajouter au panier

      Image fournie par le vendeur

      Tomas Hrycej
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

      Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

      Buch. Etat : Neu. Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations ¿beyond¿ the sole computing experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. N° de réf. du vendeur 9783031190735

      Contacter le vendeur

      Acheter neuf

      EUR 90,94
      Autre devise
      Frais de port : EUR 15
      De Allemagne vers France
      Destinations, frais et délais

      Quantité disponible : 2 disponible(s)

      Ajouter au panier

      Image d'archives

      Handschuh, Siegfried
      ISBN 10 : 3031190734 ISBN 13 : 9783031190735
      Neuf Couverture rigide

      Vendeur : TextbookRush, Grandview Heights, OH, Etats-Unis

      Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

      Etat : Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. N° de réf. du vendeur 52498145

      Contacter le vendeur

      Acheter neuf

      EUR 78,48
      Autre devise
      Frais de port : EUR 64,92
      De Etats-Unis vers France
      Destinations, frais et délais

      Quantité disponible : 1 disponible(s)

      Ajouter au panier