Articles liés à Smart Big Data in Digital Agriculture Applications:...

Smart Big Data in Digital Agriculture Applications: Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence - Couverture rigide

 
9783031526442: Smart Big Data in Digital Agriculture Applications: Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence

Synopsis

In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent “complexity” and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it “smart” is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization? 2.) How can we achieve a more optimal optimization? 3.) Is it possible to demand “more optimal machine learning,” exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture? 
This  book details the  foundations  of  the  plant physiology-informed  machine  learning  (PPIML)  and  the  principle  of  tail  matching (POTM) framework. It is the 9th title of the "Agriculture Automation and Control" book series published by Springer.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Haoyu Niu is a research engineer in the Institute of Data Science at Texas A&M University, College Station (TAMIDS). He works at the intersection of data science and cyberinfrastructure for smart agriculture. He joins a team of researchers from TAMIDS, Texas A&M's Department of Electrical & Computer Engineering, AgriLife Research, AgriLife Extension, and the School of Performance, Visualization and Fine Arts on a project to develop data-driven infrastructure that enables efficient irrigation using AI-derived crop-growth model based in UAV imaging and environmental data. His research interests include machine learning, computer vision, and robotics. More specifically, he is interested in applying big data, deep learning, and remote sensing technology for data analysis. He received his Ph.D. from Electrical Engineering and Computer Science department at UC, Merced.

YangQuan Chen is a full professor at the School of Engineering, University of California, Merced. He was on the faculty of Electrical and Computer Engineering Dept. of Utah State University, Logan, Utah from 2000 to 2012 where he was a tenured associate professor and the Director for the Center for Self-Organizing and Intelligent Systems (CSOIS) from 2004-2012. Dr. Chen published many books, papers and patents. He served as the General Co-Chair for ICUAS 2014 and 2017, 2019 (International Conference on Unmanned Aircraft Systems), and on the editorial board for journals like IEEE Trans. on Control Systems Technology, ISA Trans., ASME Journal of Dynamics Systems, Measurement and Control, IFAC journals of Control Engineering Practice as well as IFAC Mechatronics, Fractional Calculus and Applied Analysis, and Nonlinear Dynamics. He also serves as the Topical Editor-in-Chief (Field Robotics), International Journal of Advanced Robotics Systems (IJARS) and Intelligent Service Robotics. He serves as an editorial board member of MDPI Applied Sciences, Sensors. His ISI Publon H-index is 67 with more than 19.6k citations, GoogleScholar citation is 43.2k with H-index 91, H10-index 540. Dr. Chen was in the 2018, 2019, 2010 and 2021 Highly Cited Researchers List by Clarivate. He won Research of The Year awards from Utah State University (2012) and UC Merced (2020) respectively. In 2018, for his cumulative work in drones, Dr. Chen won "Senate Distinguished Scholarly Public Service award" that recognizes a faculty member who has energetically and creatively applied his or her professional expertise and scholarship to benefit the local, regional, national or international community.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer International Publishing AG
  • Date d'édition2024
  • ISBN 10 3031526449
  • ISBN 13 9783031526442
  • ReliureRelié
  • Langueanglais
  • Nombre de pages239
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 150,98

Autre devise

EUR 17,62 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 138,38

Autre devise

EUR 4,73 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Smart Big Data in Digital Agriculture Applications:...

Image d'archives

Niu, Haoyu; Chen, YangQuan
Edité par Springer, 2024
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783031526442_new

Contacter le vendeur

Acheter neuf

EUR 138,38
Autre devise
Frais de port : EUR 4,73
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Haoyu Niu|YangQuan Chen
Edité par Springer Nature Switzerland, 2024
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Summarizes the state-of-the-art agriculture applications with small UAVHighlights new field methods for data gathering with machine learningSpecial focuses on smart data acquisition and analysisHaoyu Niu&nbspis a research. N° de réf. du vendeur 1303460189

Contacter le vendeur

Acheter neuf

EUR 137,26
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Niu, Haoyu; Chen, Yangquan
Edité par Springer, 2024
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 47456794-n

Contacter le vendeur

Acheter neuf

EUR 138,37
Autre devise
Frais de port : EUR 17,80
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Niu, Haoyu; Chen, Yangquan
Edité par Springer, 2024
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47456794

Contacter le vendeur

Acheter D'occasion

EUR 150,98
Autre devise
Frais de port : EUR 17,62
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Niu, Haoyu; Chen, Yangquan
Edité par Springer, 2024
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47456794

Contacter le vendeur

Acheter D'occasion

EUR 151,99
Autre devise
Frais de port : EUR 17,80
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Yangquan Chen
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent 'complexity' and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it 'smart' is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization 2.) How can we achieve a more optimal optimization 3.) Is it possible to demand 'more optimal machine learning,' exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the 'Agriculture Automation and Control' book series published by Springer. N° de réf. du vendeur 9783031526442

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yangquan Chen
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent 'complexity' and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it 'smart' is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization 2.) How can we achieve a more optimal optimization 3.) Is it possible to demand 'more optimal machine learning,' exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the 'Agriculture Automation and Control' book series published by Springer. 260 pp. Englisch. N° de réf. du vendeur 9783031526442

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Niu, Haoyu; Chen, Yangquan
Edité par Springer, 2024
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 47456794-n

Contacter le vendeur

Acheter neuf

EUR 154,77
Autre devise
Frais de port : EUR 17,62
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Yangquan Chen
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent ¿complexity¿ and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it ¿smart¿ is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization 2.) How can we achieve a more optimal optimization 3.) Is it possible to demand ¿more optimal machine learning,¿ exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. N° de réf. du vendeur 9783031526442

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Haoyu Niu
ISBN 10 : 3031526449 ISBN 13 : 9783031526442
Neuf Couverture rigide

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent complexity and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it smart is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization? 2.) How can we achieve a more optimal optimization? 3.) Is it possible to demand more optimal machine learning, exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture? This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the "Agriculture Automation and Control" book series published by Springer. In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9783031526442

Contacter le vendeur

Acheter neuf

EUR 146,03
Autre devise
Frais de port : EUR 29,66
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 2 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre