Articles liés à Using Fundamental Analysis and an Ensemble of Classifier...

Using Fundamental Analysis and an Ensemble of Classifier Models Along With a Risk-off Filter to Select Outperforming Companies - Couverture rigide

 
9783031620607: Using Fundamental Analysis and an Ensemble of Classifier Models Along With a Risk-off Filter to Select Outperforming Companies

Synopsis

This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the model's performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the model's volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Manuel Moura is currently doing a MBA at London Business School. Prior to that he worked at LFO since 2019. He received a Master's Degree in Electrical Engineering and Computer Science with a specialization in Control Systems from Instituto Superior Técnico. At LFO, he worked as a quantitative researcher developing models to invest in the stock market and manage risk but also as a portfolio manager. He did internships in consulting at Bain & Company in Brussels and in private equity at Advent International in London.

Rui Ferreira Neves is a professor at Instituto Superior Técnico since 2005. He received the Eng -Diploma and the PhD degrees in Electrical and Computer Engineering from the Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 1993 and 2001, respectively. In 2006 he joined Instituto de Telecomunicações (IT) as a research Associate. His research activity deals with evolutionary computation and pattern matching applied to the financial markets, sensor networks, embedded systems and mixed signal integrated circuits. He uses both fundamental, technical and pattern matching indicators to find the evolution of the financial markets. During his research activities he has collaborated/coordinated several EU and National projects. He supervised 50 MSc Theses. He published more than 60 works, respectively, 7 books, 4 book chapters, 20 journal papers and 30 conference papers.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer International Publishing AG
  • Date d'édition2024
  • ISBN 10 3031620607
  • ISBN 13 9783031620607
  • ReliureRelié
  • Langueanglais
  • Nombre de pages71
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 29,06

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Using Fundamental Analysis and an Ensemble of Classifier...

Image fournie par le vendeur

Moura, Manuel|Neves, Rui
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distin. N° de réf. du vendeur 1602275830

Contacter le vendeur

Acheter neuf

EUR 29,06
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Rui Neves
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the model's performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the model's volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility. N° de réf. du vendeur 9783031620607

Contacter le vendeur

Acheter neuf

EUR 29,95
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Manuel Moura
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the model's performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the model's volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility. 71 pp. Englisch. N° de réf. du vendeur 9783031620607

Contacter le vendeur

Acheter neuf

EUR 29,95
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Rui Neves
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the model¿s performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the model¿s volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 84 pp. Englisch. N° de réf. du vendeur 9783031620607

Contacter le vendeur

Acheter neuf

EUR 29,95
Autre devise
Frais de port : EUR 19,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Moura, Manuel; Neves, Rui
Edité par Springer, 2024
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2025th edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26401155018

Contacter le vendeur

Acheter neuf

EUR 44,91
Autre devise
Frais de port : EUR 7,82
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Moura, Manuel; Neves, Rui
Edité par Springer, 2024
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 396270613

Contacter le vendeur

Acheter neuf

EUR 43,80
Autre devise
Frais de port : EUR 10,43
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Moura, Manuel; Neves, Rui
Edité par Springer, 2024
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18401155008

Contacter le vendeur

Acheter neuf

EUR 46,55
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Moura, Manuel/ Neves, Rui
Edité par Springer-Nature New York Inc, 2024
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 82 pages. 9.44x6.61x9.69 inches. In Stock. N° de réf. du vendeur x-3031620607

Contacter le vendeur

Acheter neuf

EUR 46,29
Autre devise
Frais de port : EUR 11,79
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Manuel Moura
ISBN 10 : 3031620607 ISBN 13 : 9783031620607
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book develops a quantitative stock market investment methodology using financial indicators that beats the benchmark of S&P500 index. To achieve this goal, an ensemble of machine learning models is meticulously constructed, incorporating four distinct algorithms: support vector machine, k-nearest neighbors, random forest, and logistic regression. These models all make use of financial ratios extracted from company financial statements for the purposes of predictive forecasting. The ensemble classifier is subject to a strict testing of precision which compares it to the performance of its constituent models separately. Rolling window and cross-validation tests are used in this evaluation in order to provide a comprehensive assessment framework. A risk-off filter is developed to limit risk during uncertain market periods, and consequently to improve the Sharpe ratio of the model. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the models performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. The substantial increase in risk-adjusted returns is accomplished by reducing the models volatility from an annual standard of deviation of 15.75% to 11.22%, which represents an almost 30% decrease in volatility. The risk adjusted performance of the final model, supported by the risk-off filter, achieves a Sharpe ratio of 1.63 which surpasses both the models performance without the filter that delivers Sharpe ratio of 1.41 and the one from the S&P500 index of 0.80. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031620607

Contacter le vendeur

Acheter neuf

EUR 39,36
Autre devise
Frais de port : EUR 65,17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier