This book, now in a revised and extended third edition, provides a comprehensive and accessible introduction to modern axiomatic set theory.
After an overview of basic notions in combinatorics and first-order logic, and discussing in great detail the axioms of set theory, the author outlines in the second part the main topics of classical set theory, including Ramsey theory and the axiom of choice. As an application of the axiom of choice, a complete proof of Robinson's construction for doubling a ball by dividing it into only five parts is given. For the new edition, the chapter on permutation models has been extended, and recent results in set theory without the axiom of choice and about cardinal characteristics have been added. The third part explains the sophisticated technique of forcing from scratch, now including more details about iterated forcing. The technique is then used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In particular, it is shown that both Martin's Axiom and Suslin's Hypothesis are independent of the axioms of set theory. The final part, with a new chapter on Laver forcing, is mainly concerned with consistency results obtained by iterations of forcing notions such as Cohen forcing, Sacks forcing, and Mathias forcing. The part begins with an extended chapter on countable support iterations of proper forcing notions, now also including proofs of some preservation theorems such as preservation of properness and of certain ultrafilters. In the following chapters, various consistency results concerning possible relations between cardinal characteristics and the existence of Ramsey ultrafilters are presented. For example, a detailed proof of Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters is given.
Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists, historical remarks, and related results at the end of the chapters, this book is also suitable for self-study.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Lorenz J. Halbeisen is Professor for Mathematical Logic and Set Theory at ETH Zurich.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 40 expédition depuis Italie vers France
Destinations, frais et délaisVendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur RSAEG6KHAC
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book, now in a revised and extended third edition, provides a comprehensive and accessible introduction to modern axiomatic set theory.After an overview of basic notions in combinatorics and first-order logic, and discussing in great detail the axioms of set theory, the author outlines in the second part the main topics of classical set theory, including Ramsey theory and the axiom of choice. As an application of the axiom of choice, a complete proof of Robinson's construction for doubling a ball by dividing it into only five parts is given. For the new edition, the chapter on permutation models has been extended, and recent results in set theory without the axiom of choice and about cardinal characteristics have been added. The third part explains the sophisticated technique of forcing from scratch, now including more details about iterated forcing. The technique is then used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In particular, it is shown that both Martin's Axiom and Suslin's Hypothesis are independent of the axioms of set theory. The final part, with a new chapter on Laver forcing, is mainly concerned with consistency results obtained by iterations of forcing notions such as Cohen forcing, Sacks forcing, and Mathias forcing. The part begins with an extended chapter on countable support iterations of proper forcing notions, now also including proofs of some preservation theorems such as preservation of properness and of certain ultrafilters. In the following chapters, various consistency results concerning possible relations between cardinal characteristics and the existence of Ramsey ultrafilters are presented. For example, a detailed proof of Shelah s astonishing construction of a model with finitely many Ramsey ultrafilters is given.Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists, historical remarks, and related results at the end of the chapters, this book is also suitable for self-study. N° de réf. du vendeur 9783031917516
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book, now in a revised and extended third edition, provides a comprehensive and accessible introduction to modern axiomatic set theory.After an overview of basic notions in combinatorics and first-order logic, and discussing in great detail the axioms of set theory, the author outlines in the second part the main topics of classical set theory, including Ramsey theory and the axiom of choice. As an application of the axiom of choice, a complete proof of Robinson's construction for doubling a ball by dividing it into only five parts is given. For the new edition, the chapter on permutation models has been extended, and recent results in set theory without the axiom of choice and about cardinal characteristics have been added. The third part explains the sophisticated technique of forcing from scratch, now including more details about iterated forcing. The technique is then used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In particular, it is shown that both Martin's Axiom and Suslin's Hypothesis are independent of the axioms of set theory. The final part, with a new chapter on Laver forcing, is mainly concerned with consistency results obtained by iterations of forcing notions such as Cohen forcing, Sacks forcing, and Mathias forcing. The part begins with an extended chapter on countable support iterations of proper forcing notions, now also including proofs of some preservation theorems such as preservation of properness and of certain ultrafilters. In the following chapters, various consistency results concerning possible relations between cardinal characteristics and the existence of Ramsey ultrafilters are presented. For example, a detailed proof of Shelah s astonishing construction of a model with finitely many Ramsey ultrafilters is given.Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists, historical remarks, and related results at the end of the chapters, this book is also suitable for self-study. 636 pp. Englisch. N° de réf. du vendeur 9783031917516
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 636 pp. Englisch. N° de réf. du vendeur 9783031917516
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. Third Edition 2025 NO-PA16APR2015-KAP. N° de réf. du vendeur 26404073183
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18404073173
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 409081088
Quantité disponible : 4 disponible(s)