This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 2,87 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 180 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 23893727/2
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-262553
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. N° de réf. du vendeur 4495965
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states. N° de réf. du vendeur 9783319008271
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states. 180 pp. Englisch. N° de réf. du vendeur 9783319008271
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783319008271
Quantité disponible : 10 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783319008271_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 180. N° de réf. du vendeur 2651413484
Quantité disponible : 4 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783319008271
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 180 9 Illus. (8 Col.). N° de réf. du vendeur 57097779
Quantité disponible : 4 disponible(s)