Gratuit expédition vers Etats-Unis
Destinations, frais et délaisEUR 14,25 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Good. 1st ed. 2016. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 3319463632-11-1
Quantité disponible : 1 disponible(s)
Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
xv, 293 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. N° de réf. du vendeur 11709DB
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783319463636_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc.Optimization plays a major role in a wide variety of theories for image processing and computer vision.Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision. 312 pp. Englisch. N° de réf. du vendeur 9783319463636
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Features a comprehensive description of regularization through optimizationContains a large selection of data fusion algorithmsIncludes chapters devoted to video compression and enhancementThis book pr. N° de réf. du vendeur 128452365
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems.The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc.Optimization plays a major role in a wide variety of theories for image processing and computer vision.Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision. N° de réf. du vendeur 9783319463636
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26375007629
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 312 pages. 9.50x6.50x1.00 inches. In Stock. N° de réf. du vendeur x-3319463632
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Hardcover. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA77333194636326
Quantité disponible : 1 disponible(s)