The Setting.- First-Order Logic in a Nutshell.- Axioms of Set Theory.- Overture: Ramsey's Theorem.- Cardinal Relations in ZF Only.- Forms of Choice.- How to Make Two Balls from One.- Models of Set Theory with Atoms.- Thirteen Cardinals and Their Relations.- The Shattering Number Revisited.- Happy Families and Their Relatives.- Coda: A Dual Form of Ramsey's Theorem.- The Idea of Forcing.- Martin's Axiom.- The Notion of Forcing.- Proving Unprovability.- Models in Which AC Fails.- Combining Forcing Notions.- Models in Which p=c.- Suslin's Problem.- Properties of Forcing Extensions.- Cohen Forcing Revisited.- Sacks Forcing.- Silver-Like Forcing Notions.- Miller Forcing.- Mathias Forcing.- How Many Ramsey Ultrafilters Exist?.- Combinatorial Properties of Sets of Partitions.- Suite.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.