This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.
Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches forgesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Bir Bhanu is Bourns Presidential Chair, Distinguished Professor of Electrical and Computer Engineering and the Director of the Center for Research in Intelligent Systems at the University of California at Riverside, USA. Some of his other Springer publications include the titles Video Bioinformatics, Distributed Video Sensor Networks, and Human Recognition at a Distance in Video.
Dr. Ajay Kumar is an Associate Professor in the Department of Computing at the Hong Kong Polytechnic University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first dedicated work on advances in biometric identification capabilities using deep learning techniquesCovers a broad range of deep learning integrated biometric techniques, including face, fingerprint, iris, gait, template protection, and is. N° de réf. du vendeur 458627417
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches forgesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning. N° de réf. du vendeur 9783319871288
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning. 344 pp. Englisch. N° de réf. du vendeur 9783319871288
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches forgesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 344 pp. Englisch. N° de réf. du vendeur 9783319871288
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 343. N° de réf. du vendeur 26382264062
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 343. N° de réf. du vendeur 381639969
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 343. N° de réf. du vendeur 18382264052
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : New. New. book. N° de réf. du vendeur ERICA80033198712856
Quantité disponible : 1 disponible(s)