Articles liés à Algorithms for Prediction of Upper Body Power of Cross-Count...

Algorithms for Prediction of Upper Body Power of Cross-Country Skiers: Prediction of Upper Body Power of Cross-Country Skiers Using Machine Learning Methods Combined With Feature Selection - Couverture souple

 
9783330020290: Algorithms for Prediction of Upper Body Power of Cross-Country Skiers: Prediction of Upper Body Power of Cross-Country Skiers Using Machine Learning Methods Combined With Feature Selection

Synopsis

Upper body power (UBP) is one of the most important factors affecting the performance of cross-country skiers during races. The purpose of this study is to develop new prediction models for predicting the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using General Regression Neural Networks (GRNN), Radial-Basis Function Network (RBF), Multilayer Perceptron (MLP), Support Vector Machine (SVM), Single Decision Tree (SDT) and Tree Boost (TB) along with the Relief-F feature selection algorithm, minimum redundancy maximum relevance (mRMR) feature selection algorithm and the Correlation-based Feature Subset Selection (CFS). Several models have been developed to predict UBP10 and UBP60 of cross-country skiers using two datasets. 10-fold cross validation has been performed for model testing. The efficiency of the prediction models has been calculated with their multiple correlation coefficients (R’s), standard error of estimates (SEE’s) and mean absolute percentage errors (MAPE’s). The results emphasize that GRNN-based prediction models show higher performance than the other regression methods.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Mustafa Mikail ÖZÇİLOĞLU was born in Kilis, Turkey, in 1985. He received his BSc, MSc and PhD degrees from the Department of Computer Engineering of Mersin University, the Department of Computer Engineering of TOBB Economy and Technology University and the Department of Electrical and Electronics Engineering of Cukurova University, respectively.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurLAP LAMBERT Academic Publishing
  • Date d'édition2016
  • ISBN 10 3330020296
  • ISBN 13 9783330020290
  • ReliureBroché
  • Langueanglais
  • Nombre de pages100
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 41,71

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Algorithms for Prediction of Upper Body Power of Cross-Count...

Image fournie par le vendeur

Mustafa Mikail Özçiloglu|Mehmet Fatih Akay
ISBN 10 : 3330020296 ISBN 13 : 9783330020290
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 158590259

Contacter le vendeur

Acheter neuf

EUR 41,71
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Mustafa Mikail Özçilo¿lu
ISBN 10 : 3330020296 ISBN 13 : 9783330020290
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Upper body power (UBP) is one of the most important factors affecting the performance of cross-country skiers during races. The purpose of this study is to develop new prediction models for predicting the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using General Regression Neural Networks (GRNN), Radial-Basis Function Network (RBF), Multilayer Perceptron (MLP), Support Vector Machine (SVM), Single Decision Tree (SDT) and Tree Boost (TB) along with the Relief-F feature selection algorithm, minimum redundancy maximum relevance (mRMR) feature selection algorithm and the Correlation-based Feature Subset Selection (CFS). Several models have been developed to predict UBP10 and UBP60 of cross-country skiers using two datasets. 10-fold cross validation has been performed for model testing. The efficiency of the prediction models has been calculated with their multiple correlation coefficients (R's), standard error of estimates (SEE's) and mean absolute percentage errors (MAPE's). The results emphasize that GRNN-based prediction models show higher performance than the other regression methods. N° de réf. du vendeur 9783330020290

Contacter le vendeur

Acheter neuf

EUR 49,90
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mustafa Mikail Özçilo¿lu
ISBN 10 : 3330020296 ISBN 13 : 9783330020290
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Upper body power (UBP) is one of the most important factors affecting the performance of cross-country skiers during races. The purpose of this study is to develop new prediction models for predicting the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using General Regression Neural Networks (GRNN), Radial-Basis Function Network (RBF), Multilayer Perceptron (MLP), Support Vector Machine (SVM), Single Decision Tree (SDT) and Tree Boost (TB) along with the Relief-F feature selection algorithm, minimum redundancy maximum relevance (mRMR) feature selection algorithm and the Correlation-based Feature Subset Selection (CFS). Several models have been developed to predict UBP10 and UBP60 of cross-country skiers using two datasets. 10-fold cross validation has been performed for model testing. The efficiency of the prediction models has been calculated with their multiple correlation coefficients (R's), standard error of estimates (SEE's) and mean absolute percentage errors (MAPE's). The results emphasize that GRNN-based prediction models show higher performance than the other regression methods. 100 pp. Englisch. N° de réf. du vendeur 9783330020290

Contacter le vendeur

Acheter neuf

EUR 49,90
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mustafa Mikail Özçilo¿lu
ISBN 10 : 3330020296 ISBN 13 : 9783330020290
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Upper body power (UBP) is one of the most important factors affecting the performance of cross-country skiers during races. The purpose of this study is to develop new prediction models for predicting the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using General Regression Neural Networks (GRNN), Radial-Basis Function Network (RBF), Multilayer Perceptron (MLP), Support Vector Machine (SVM), Single Decision Tree (SDT) and Tree Boost (TB) along with the Relief-F feature selection algorithm, minimum redundancy maximum relevance (mRMR) feature selection algorithm and the Correlation-based Feature Subset Selection (CFS). Several models have been developed to predict UBP10 and UBP60 of cross-country skiers using two datasets. 10-fold cross validation has been performed for model testing. The efficiency of the prediction models has been calculated with their multiple correlation coefficients (R¿s), standard error of estimates (SEE¿s) and mean absolute percentage errors (MAPE¿s). The results emphasize that GRNN-based prediction models show higher performance than the other regression methods.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. N° de réf. du vendeur 9783330020290

Contacter le vendeur

Acheter neuf

EUR 49,90
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Mustafa Mikail Oezçiloglu
ISBN 10 : 3330020296 ISBN 13 : 9783330020290
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 100 pages. 8.66x5.91x0.23 inches. In Stock. N° de réf. du vendeur 3330020296

Contacter le vendeur

Acheter neuf

EUR 81,04
Autre devise
Frais de port : EUR 11,68
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier