Outlier detection system discovers the novel or rare events, anomalies, vicious actions, exceptional phenomena. It is mandatory to find these anomalies in data mining because the presence of these objects usually makes the database inefficient. An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. Finding objects that do not conform to well-defined notions of expected behaviour in a dataset is called outlier detection. Outlier detection is a pre-processing step for locating these non-conforming objects in data sets. This outlier detection is a challenging process in large scale database since it has high dimensional data with low anomalous rate. Here outliers are defined formally and the optimized ways to detect outliers is also proposed here. Optimization in outlier detection is achieved by a new concept of holoentropy which combines entropy and total correlation. It is a more effective and efficient practical phenomenon in outlier detection methods. It can be used effectively to deal with both large and high-dimensional datasets.
Chiranji Lal Chowdhary working as Assistant Professor (Selection Grade) at VIT Vellore in the School of Information Technology and Engineering. Prior to coming to VIT, he was a Lecturer at the M.S. Ramaiah Institute of Technology, Bangalore.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Outlier detection system discovers the novel or rare events, anomalies, vicious actions, exceptional phenomena. It is mandatory to find these anomalies in data mining because the presence of these objects usually makes the database inefficient. An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. Finding objects that do not conform to well-defined notions of expected behaviour in a dataset is called outlier detection. Outlier detection is a pre-processing step for locating these non-conforming objects in data sets. This outlier detection is a challenging process in large scale database since it has high dimensional data with low anomalous rate. Here outliers are defined formally and the optimized ways to detect outliers is also proposed here. Optimization in outlier detection is achieved by a new concept of holoentropy which combines entropy and total correlation. It is a more effective and efficient practical phenomenon in outlier detection methods. It can be used effectively to deal with both large and high-dimensional datasets. 104 pp. Englisch. N° de réf. du vendeur 9783330326842
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Outlier detection system discovers the novel or rare events, anomalies, vicious actions, exceptional phenomena. It is mandatory to find these anomalies in data mining because the presence of these objects usually makes the database inefficient. An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. Finding objects that do not conform to well-defined notions of expected behaviour in a dataset is called outlier detection. Outlier detection is a pre-processing step for locating these non-conforming objects in data sets. This outlier detection is a challenging process in large scale database since it has high dimensional data with low anomalous rate. Here outliers are defined formally and the optimized ways to detect outliers is also proposed here. Optimization in outlier detection is achieved by a new concept of holoentropy which combines entropy and total correlation. It is a more effective and efficient practical phenomenon in outlier detection methods. It can be used effectively to deal with both large and high-dimensional datasets. N° de réf. du vendeur 9783330326842
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Chowdhary Chiranji LalChiranji Lal Chowdhary working as Assistant Professor (Selection Grade) at VIT Vellore in the School of Information Technology and Engineering. Prior to coming to VIT, he was a Lecturer at the M.S. Ramaiah Insti. N° de réf. du vendeur 385708412
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 104 pages. 8.66x5.91x0.24 inches. In Stock. N° de réf. du vendeur 3330326840
Quantité disponible : 1 disponible(s)